| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu1stalem | Structured version Visualization version GIF version | ||
| Description: Lemma for idfu1sta 49201. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu2nda.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu2nda.d | ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| idfu2nda.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| idfu1stalem | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 2 | idfu2nda.i | . . . . . . 7 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfu2nda.d | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 4 | 2, 3 | eqeltrrid 2836 | . . . . . 6 ⊢ (𝜑 → (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 5 | idfurcl 49198 | . . . . . 6 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 6 | 2 | idfucl 17788 | . . . . . 6 ⊢ (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 7 | 4, 5, 6 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 8 | 7 | func1st2nd 49176 | . . . 4 ⊢ (𝜑 → (1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼)) |
| 9 | 3 | func1st2nd 49176 | . . . 4 ⊢ (𝜑 → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 10 | 8, 9 | funchomf 49197 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 11 | 10 | homfeqbas 17602 | . 2 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 12 | 1, 11 | eqtr4d 2769 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Catccat 17570 Func cfunc 17761 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17574 df-cid 17575 df-homf 17576 df-func 17765 df-idfu 17766 |
| This theorem is referenced by: idfu1sta 49201 idfu1a 49202 idfu2nda 49203 |
| Copyright terms: Public domain | W3C validator |