Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu Structured version   Visualization version   GIF version

Theorem imaidfu 49210
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu.s 𝑆 = ((1st𝐼) “ 𝐴)
Assertion
Ref Expression
imaidfu (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Distinct variable groups:   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu
Dummy variables 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaidfu.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 eqidd 2732 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
41, 2, 3idfu1sta 49201 . . . . . . . . . . . 12 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
54adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
65cnveqd 5814 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
7 cnvresid 6560 . . . . . . . . . 10 ( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷))
86, 7eqtrdi 2782 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
98fveq1d 6824 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧))
10 imaidfu.s . . . . . . . . . . . . 13 𝑆 = ((1st𝐼) “ 𝐴)
11 imassrn 6019 . . . . . . . . . . . . 13 ((1st𝐼) “ 𝐴) ⊆ ran (1st𝐼)
1210, 11eqsstri 3976 . . . . . . . . . . . 12 𝑆 ⊆ ran (1st𝐼)
134rneqd 5877 . . . . . . . . . . . . 13 (𝜑 → ran (1st𝐼) = ran ( I ↾ (Base‘𝐷)))
14 rnresi 6023 . . . . . . . . . . . . 13 ran ( I ↾ (Base‘𝐷)) = (Base‘𝐷)
1513, 14eqtrdi 2782 . . . . . . . . . . . 12 (𝜑 → ran (1st𝐼) = (Base‘𝐷))
1612, 15sseqtrid 3972 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (Base‘𝐷))
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐷))
18 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1917, 18sseldd 3930 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐷))
20 fvresi 7107 . . . . . . . . 9 (𝑧 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
229, 21eqtrd 2766 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = 𝑧)
238fveq1d 6824 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤))
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2517, 24sseldd 3930 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐷))
26 fvresi 7107 . . . . . . . . 9 (𝑤 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2725, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2823, 27eqtrd 2766 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = 𝑤)
2922, 28oveq12d 7364 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) = (𝑧(2nd𝐼)𝑤))
3022, 28oveq12d 7364 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤)) = (𝑧𝐻𝑤))
3129, 30imaeq12d 6009 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
32 f1oi 6801 . . . . . . . 8 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
335f1oeq1d 6758 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)))
3432, 33mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷))
35 f1of1 6762 . . . . . . 7 ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
3634, 35syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
37 fvexd 6837 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) ∈ V)
38 imaidfu.k . . . . . 6 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
3910, 36, 18, 24, 37, 38imaf1hom 49208 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))))
40 imaidfu.j . . . . . . 7 𝐽 = (Homf𝐷)
41 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
42 imaidfu.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
4340, 41, 42, 19, 25homfval 17598 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤))
442adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸))
45 eqidd 2732 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (Base‘𝐷) = (Base‘𝐷))
4642oveqi 7359 . . . . . . . . . 10 (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)
4746a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤))
481, 44, 45, 19, 25, 47idfu2nda 49203 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧(2nd𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤)))
4948imaeq1d 6007 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)))
50 ssid 3952 . . . . . . . 8 (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤)
51 resiima 6024 . . . . . . . 8 ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5250, 51ax-mp 5 . . . . . . 7 (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)
5349, 52eqtrdi 2782 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5443, 53eqtr4d 2769 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
5531, 39, 543eqtr4rd 2777 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
5655ralrimivva 3175 . . 3 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
57 fveq2 6822 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
58 df-ov 7349 . . . . . 6 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
5957, 58eqtr4di 2784 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
60 fveq2 6822 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
61 df-ov 7349 . . . . . 6 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
6260, 61eqtr4di 2784 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
6359, 62eqeq12d 2747 . . . 4 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
6463ralxp 5780 . . 3 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
6556, 64sylibr 234 . 2 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
6640, 41homffn 17599 . . . 4 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
6766a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)))
68 fvexd 6837 . . . 4 (𝜑 → (1st𝐼) ∈ V)
6968, 68, 38imasubclem2 49205 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
70 xpss12 5629 . . . 4 ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
7116, 16, 70syl2anc 584 . . 3 (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
72 fvreseq1 6972 . . 3 (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7367, 69, 71, 72syl21anc 837 . 2 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7465, 73mpbird 257 1 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {csn 4573  cop 4579   ciun 4939   I cid 5508   × cxp 5612  ccnv 5613  ran crn 5615  cres 5616  cima 5617   Fn wfn 6476  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  Hom chom 17172  Homf chomf 17572   Func cfunc 17761  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-homf 17576  df-func 17765  df-idfu 17766
This theorem is referenced by:  imaidfu2  49211
  Copyright terms: Public domain W3C validator