| Step | Hyp | Ref
| Expression |
| 1 | | imaidfu.i |
. . . . . . . . . . . . 13
⊢ 𝐼 =
(idfunc‘𝐶) |
| 2 | | imaidfu.d |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| 3 | | eqidd 2736 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐷) = (Base‘𝐷)) |
| 4 | 1, 2, 3 | idfu1sta 49008 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘𝐼) = ( I ↾
(Base‘𝐷))) |
| 5 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (1st ‘𝐼) = ( I ↾
(Base‘𝐷))) |
| 6 | 5 | cnveqd 5855 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ◡(1st ‘𝐼) = ◡( I ↾ (Base‘𝐷))) |
| 7 | | cnvresid 6614 |
. . . . . . . . . 10
⊢ ◡( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷)) |
| 8 | 6, 7 | eqtrdi 2786 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ◡(1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 9 | 8 | fveq1d 6877 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡(1st ‘𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧)) |
| 10 | | imaidfu.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = ((1st ‘𝐼) “ 𝐴) |
| 11 | | imassrn 6058 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝐼) “ 𝐴) ⊆ ran (1st ‘𝐼) |
| 12 | 10, 11 | eqsstri 4005 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆ ran (1st
‘𝐼) |
| 13 | 4 | rneqd 5918 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (1st
‘𝐼) = ran ( I ↾
(Base‘𝐷))) |
| 14 | | rnresi 6062 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (Base‘𝐷)) =
(Base‘𝐷) |
| 15 | 13, 14 | eqtrdi 2786 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (1st
‘𝐼) =
(Base‘𝐷)) |
| 16 | 12, 15 | sseqtrid 4001 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐷)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝐷)) |
| 18 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
| 19 | 17, 18 | sseldd 3959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ (Base‘𝐷)) |
| 20 | | fvresi 7164 |
. . . . . . . . 9
⊢ (𝑧 ∈ (Base‘𝐷) → (( I ↾
(Base‘𝐷))‘𝑧) = 𝑧) |
| 21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧) |
| 22 | 9, 21 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡(1st ‘𝐼)‘𝑧) = 𝑧) |
| 23 | 8 | fveq1d 6877 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡(1st ‘𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤)) |
| 24 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ 𝑆) |
| 25 | 17, 24 | sseldd 3959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ (Base‘𝐷)) |
| 26 | | fvresi 7164 |
. . . . . . . . 9
⊢ (𝑤 ∈ (Base‘𝐷) → (( I ↾
(Base‘𝐷))‘𝑤) = 𝑤) |
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤) |
| 28 | 23, 27 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡(1st ‘𝐼)‘𝑤) = 𝑤) |
| 29 | 22, 28 | oveq12d 7421 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((◡(1st ‘𝐼)‘𝑧)(2nd ‘𝐼)(◡(1st ‘𝐼)‘𝑤)) = (𝑧(2nd ‘𝐼)𝑤)) |
| 30 | 22, 28 | oveq12d 7421 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((◡(1st ‘𝐼)‘𝑧)𝐻(◡(1st ‘𝐼)‘𝑤)) = (𝑧𝐻𝑤)) |
| 31 | 29, 30 | imaeq12d 6048 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (((◡(1st ‘𝐼)‘𝑧)(2nd ‘𝐼)(◡(1st ‘𝐼)‘𝑤)) “ ((◡(1st ‘𝐼)‘𝑧)𝐻(◡(1st ‘𝐼)‘𝑤))) = ((𝑧(2nd ‘𝐼)𝑤) “ (𝑧𝐻𝑤))) |
| 32 | | f1oi 6855 |
. . . . . . . 8
⊢ ( I
↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) |
| 33 | 5 | f1oeq1d 6812 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((1st ‘𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷))) |
| 34 | 32, 33 | mpbiri 258 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (1st ‘𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷)) |
| 35 | | f1of1 6816 |
. . . . . . 7
⊢
((1st ‘𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st ‘𝐼):(Base‘𝐷)–1-1→(Base‘𝐷)) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (1st ‘𝐼):(Base‘𝐷)–1-1→(Base‘𝐷)) |
| 37 | | fvexd 6890 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (1st ‘𝐼) ∈ V) |
| 38 | | imaidfu.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ (𝐻‘𝑝))) |
| 39 | 10, 36, 18, 24, 37, 38 | imaf1hom 49015 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐾𝑤) = (((◡(1st ‘𝐼)‘𝑧)(2nd ‘𝐼)(◡(1st ‘𝐼)‘𝑤)) “ ((◡(1st ‘𝐼)‘𝑧)𝐻(◡(1st ‘𝐼)‘𝑤)))) |
| 40 | | imaidfu.j |
. . . . . . 7
⊢ 𝐽 = (Homf
‘𝐷) |
| 41 | | eqid 2735 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 42 | | imaidfu.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐷) |
| 43 | 40, 41, 42, 19, 25 | homfval 17702 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤)) |
| 44 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸)) |
| 45 | | eqidd 2736 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (Base‘𝐷) = (Base‘𝐷)) |
| 46 | 42 | oveqi 7416 |
. . . . . . . . . 10
⊢ (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤) |
| 47 | 46 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)) |
| 48 | 1, 44, 45, 19, 25, 47 | idfu2nda 49010 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧(2nd ‘𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤))) |
| 49 | 48 | imaeq1d 6046 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑧(2nd ‘𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤))) |
| 50 | | ssid 3981 |
. . . . . . . 8
⊢ (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) |
| 51 | | resiima 6063 |
. . . . . . . 8
⊢ ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)) |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . 7
⊢ (( I
↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤) |
| 53 | 49, 52 | eqtrdi 2786 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑧(2nd ‘𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)) |
| 54 | 43, 53 | eqtr4d 2773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd ‘𝐼)𝑤) “ (𝑧𝐻𝑤))) |
| 55 | 31, 39, 54 | 3eqtr4rd 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 56 | 55 | ralrimivva 3187 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 57 | | fveq2 6875 |
. . . . . 6
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐽‘𝑞) = (𝐽‘〈𝑧, 𝑤〉)) |
| 58 | | df-ov 7406 |
. . . . . 6
⊢ (𝑧𝐽𝑤) = (𝐽‘〈𝑧, 𝑤〉) |
| 59 | 57, 58 | eqtr4di 2788 |
. . . . 5
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐽‘𝑞) = (𝑧𝐽𝑤)) |
| 60 | | fveq2 6875 |
. . . . . 6
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐾‘𝑞) = (𝐾‘〈𝑧, 𝑤〉)) |
| 61 | | df-ov 7406 |
. . . . . 6
⊢ (𝑧𝐾𝑤) = (𝐾‘〈𝑧, 𝑤〉) |
| 62 | 60, 61 | eqtr4di 2788 |
. . . . 5
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐾‘𝑞) = (𝑧𝐾𝑤)) |
| 63 | 59, 62 | eqeq12d 2751 |
. . . 4
⊢ (𝑞 = 〈𝑧, 𝑤〉 → ((𝐽‘𝑞) = (𝐾‘𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤))) |
| 64 | 63 | ralxp 5821 |
. . 3
⊢
(∀𝑞 ∈
(𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 65 | 56, 64 | sylibr 234 |
. 2
⊢ (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞)) |
| 66 | 40, 41 | homffn 17703 |
. . . 4
⊢ 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 67 | 66 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))) |
| 68 | | fvexd 6890 |
. . . 4
⊢ (𝜑 → (1st
‘𝐼) ∈
V) |
| 69 | 68, 68, 38 | imasubclem2 49012 |
. . 3
⊢ (𝜑 → 𝐾 Fn (𝑆 × 𝑆)) |
| 70 | | xpss12 5669 |
. . . 4
⊢ ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) |
| 71 | 16, 16, 70 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) |
| 72 | | fvreseq1 7028 |
. . 3
⊢ (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞))) |
| 73 | 67, 69, 71, 72 | syl21anc 837 |
. 2
⊢ (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞))) |
| 74 | 65, 73 | mpbird 257 |
1
⊢ (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾) |