Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu Structured version   Visualization version   GIF version

Theorem imaidfu 49017
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu.s 𝑆 = ((1st𝐼) “ 𝐴)
Assertion
Ref Expression
imaidfu (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Distinct variable groups:   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu
Dummy variables 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaidfu.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 eqidd 2736 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
41, 2, 3idfu1sta 49008 . . . . . . . . . . . 12 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
54adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
65cnveqd 5855 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
7 cnvresid 6614 . . . . . . . . . 10 ( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷))
86, 7eqtrdi 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
98fveq1d 6877 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧))
10 imaidfu.s . . . . . . . . . . . . 13 𝑆 = ((1st𝐼) “ 𝐴)
11 imassrn 6058 . . . . . . . . . . . . 13 ((1st𝐼) “ 𝐴) ⊆ ran (1st𝐼)
1210, 11eqsstri 4005 . . . . . . . . . . . 12 𝑆 ⊆ ran (1st𝐼)
134rneqd 5918 . . . . . . . . . . . . 13 (𝜑 → ran (1st𝐼) = ran ( I ↾ (Base‘𝐷)))
14 rnresi 6062 . . . . . . . . . . . . 13 ran ( I ↾ (Base‘𝐷)) = (Base‘𝐷)
1513, 14eqtrdi 2786 . . . . . . . . . . . 12 (𝜑 → ran (1st𝐼) = (Base‘𝐷))
1612, 15sseqtrid 4001 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (Base‘𝐷))
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐷))
18 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1917, 18sseldd 3959 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐷))
20 fvresi 7164 . . . . . . . . 9 (𝑧 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
229, 21eqtrd 2770 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = 𝑧)
238fveq1d 6877 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤))
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2517, 24sseldd 3959 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐷))
26 fvresi 7164 . . . . . . . . 9 (𝑤 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2725, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2823, 27eqtrd 2770 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = 𝑤)
2922, 28oveq12d 7421 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) = (𝑧(2nd𝐼)𝑤))
3022, 28oveq12d 7421 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤)) = (𝑧𝐻𝑤))
3129, 30imaeq12d 6048 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
32 f1oi 6855 . . . . . . . 8 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
335f1oeq1d 6812 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)))
3432, 33mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷))
35 f1of1 6816 . . . . . . 7 ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
3634, 35syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
37 fvexd 6890 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) ∈ V)
38 imaidfu.k . . . . . 6 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
3910, 36, 18, 24, 37, 38imaf1hom 49015 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))))
40 imaidfu.j . . . . . . 7 𝐽 = (Homf𝐷)
41 eqid 2735 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
42 imaidfu.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
4340, 41, 42, 19, 25homfval 17702 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤))
442adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸))
45 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (Base‘𝐷) = (Base‘𝐷))
4642oveqi 7416 . . . . . . . . . 10 (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)
4746a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤))
481, 44, 45, 19, 25, 47idfu2nda 49010 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧(2nd𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤)))
4948imaeq1d 6046 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)))
50 ssid 3981 . . . . . . . 8 (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤)
51 resiima 6063 . . . . . . . 8 ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5250, 51ax-mp 5 . . . . . . 7 (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)
5349, 52eqtrdi 2786 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5443, 53eqtr4d 2773 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
5531, 39, 543eqtr4rd 2781 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
5655ralrimivva 3187 . . 3 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
57 fveq2 6875 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
58 df-ov 7406 . . . . . 6 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
5957, 58eqtr4di 2788 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
60 fveq2 6875 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
61 df-ov 7406 . . . . . 6 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
6260, 61eqtr4di 2788 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
6359, 62eqeq12d 2751 . . . 4 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
6463ralxp 5821 . . 3 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
6556, 64sylibr 234 . 2 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
6640, 41homffn 17703 . . . 4 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
6766a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)))
68 fvexd 6890 . . . 4 (𝜑 → (1st𝐼) ∈ V)
6968, 68, 38imasubclem2 49012 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
70 xpss12 5669 . . . 4 ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
7116, 16, 70syl2anc 584 . . 3 (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
72 fvreseq1 7028 . . 3 (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7367, 69, 71, 72syl21anc 837 . 2 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7465, 73mpbird 257 1 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  {csn 4601  cop 4607   ciun 4967   I cid 5547   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656  cima 5657   Fn wfn 6525  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  Homf chomf 17676   Func cfunc 17865  idfunccidfu 17866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-ixp 8910  df-cat 17678  df-cid 17679  df-homf 17680  df-func 17869  df-idfu 17870
This theorem is referenced by:  imaidfu2  49018
  Copyright terms: Public domain W3C validator