Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu Structured version   Visualization version   GIF version

Theorem imaidfu 49092
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu.s 𝑆 = ((1st𝐼) “ 𝐴)
Assertion
Ref Expression
imaidfu (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Distinct variable groups:   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu
Dummy variables 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaidfu.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
41, 2, 3idfu1sta 49083 . . . . . . . . . . . 12 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
54adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
65cnveqd 5829 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
7 cnvresid 6579 . . . . . . . . . 10 ( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷))
86, 7eqtrdi 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
98fveq1d 6842 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧))
10 imaidfu.s . . . . . . . . . . . . 13 𝑆 = ((1st𝐼) “ 𝐴)
11 imassrn 6031 . . . . . . . . . . . . 13 ((1st𝐼) “ 𝐴) ⊆ ran (1st𝐼)
1210, 11eqsstri 3990 . . . . . . . . . . . 12 𝑆 ⊆ ran (1st𝐼)
134rneqd 5891 . . . . . . . . . . . . 13 (𝜑 → ran (1st𝐼) = ran ( I ↾ (Base‘𝐷)))
14 rnresi 6035 . . . . . . . . . . . . 13 ran ( I ↾ (Base‘𝐷)) = (Base‘𝐷)
1513, 14eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → ran (1st𝐼) = (Base‘𝐷))
1612, 15sseqtrid 3986 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (Base‘𝐷))
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐷))
18 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1917, 18sseldd 3944 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐷))
20 fvresi 7129 . . . . . . . . 9 (𝑧 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
229, 21eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = 𝑧)
238fveq1d 6842 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤))
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2517, 24sseldd 3944 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐷))
26 fvresi 7129 . . . . . . . . 9 (𝑤 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2725, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2823, 27eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = 𝑤)
2922, 28oveq12d 7387 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) = (𝑧(2nd𝐼)𝑤))
3022, 28oveq12d 7387 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤)) = (𝑧𝐻𝑤))
3129, 30imaeq12d 6021 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
32 f1oi 6820 . . . . . . . 8 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
335f1oeq1d 6777 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)))
3432, 33mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷))
35 f1of1 6781 . . . . . . 7 ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
3634, 35syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
37 fvexd 6855 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) ∈ V)
38 imaidfu.k . . . . . 6 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
3910, 36, 18, 24, 37, 38imaf1hom 49090 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))))
40 imaidfu.j . . . . . . 7 𝐽 = (Homf𝐷)
41 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
42 imaidfu.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
4340, 41, 42, 19, 25homfval 17633 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤))
442adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸))
45 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (Base‘𝐷) = (Base‘𝐷))
4642oveqi 7382 . . . . . . . . . 10 (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)
4746a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤))
481, 44, 45, 19, 25, 47idfu2nda 49085 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧(2nd𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤)))
4948imaeq1d 6019 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)))
50 ssid 3966 . . . . . . . 8 (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤)
51 resiima 6036 . . . . . . . 8 ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5250, 51ax-mp 5 . . . . . . 7 (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)
5349, 52eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5443, 53eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
5531, 39, 543eqtr4rd 2775 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
5655ralrimivva 3178 . . 3 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
57 fveq2 6840 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
58 df-ov 7372 . . . . . 6 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
5957, 58eqtr4di 2782 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
60 fveq2 6840 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
61 df-ov 7372 . . . . . 6 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
6260, 61eqtr4di 2782 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
6359, 62eqeq12d 2745 . . . 4 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
6463ralxp 5795 . . 3 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
6556, 64sylibr 234 . 2 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
6640, 41homffn 17634 . . . 4 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
6766a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)))
68 fvexd 6855 . . . 4 (𝜑 → (1st𝐼) ∈ V)
6968, 68, 38imasubclem2 49087 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
70 xpss12 5646 . . . 4 ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
7116, 16, 70syl2anc 584 . . 3 (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
72 fvreseq1 6993 . . 3 (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7367, 69, 71, 72syl21anc 837 . 2 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7465, 73mpbird 257 1 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  {csn 4585  cop 4591   ciun 4951   I cid 5525   × cxp 5629  ccnv 5630  ran crn 5632  cres 5633  cima 5634   Fn wfn 6494  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Homf chomf 17607   Func cfunc 17796  idfunccidfu 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-func 17800  df-idfu 17801
This theorem is referenced by:  imaidfu2  49093
  Copyright terms: Public domain W3C validator