Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu Structured version   Visualization version   GIF version

Theorem imaidfu 49105
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu.s 𝑆 = ((1st𝐼) “ 𝐴)
Assertion
Ref Expression
imaidfu (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Distinct variable groups:   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu
Dummy variables 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaidfu.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
41, 2, 3idfu1sta 49096 . . . . . . . . . . . 12 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
54adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
65cnveqd 5818 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
7 cnvresid 6561 . . . . . . . . . 10 ( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷))
86, 7eqtrdi 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
98fveq1d 6824 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧))
10 imaidfu.s . . . . . . . . . . . . 13 𝑆 = ((1st𝐼) “ 𝐴)
11 imassrn 6022 . . . . . . . . . . . . 13 ((1st𝐼) “ 𝐴) ⊆ ran (1st𝐼)
1210, 11eqsstri 3982 . . . . . . . . . . . 12 𝑆 ⊆ ran (1st𝐼)
134rneqd 5880 . . . . . . . . . . . . 13 (𝜑 → ran (1st𝐼) = ran ( I ↾ (Base‘𝐷)))
14 rnresi 6026 . . . . . . . . . . . . 13 ran ( I ↾ (Base‘𝐷)) = (Base‘𝐷)
1513, 14eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → ran (1st𝐼) = (Base‘𝐷))
1612, 15sseqtrid 3978 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (Base‘𝐷))
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐷))
18 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1917, 18sseldd 3936 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐷))
20 fvresi 7109 . . . . . . . . 9 (𝑧 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
229, 21eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = 𝑧)
238fveq1d 6824 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤))
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2517, 24sseldd 3936 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐷))
26 fvresi 7109 . . . . . . . . 9 (𝑤 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2725, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2823, 27eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = 𝑤)
2922, 28oveq12d 7367 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) = (𝑧(2nd𝐼)𝑤))
3022, 28oveq12d 7367 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤)) = (𝑧𝐻𝑤))
3129, 30imaeq12d 6012 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
32 f1oi 6802 . . . . . . . 8 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
335f1oeq1d 6759 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)))
3432, 33mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷))
35 f1of1 6763 . . . . . . 7 ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
3634, 35syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
37 fvexd 6837 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) ∈ V)
38 imaidfu.k . . . . . 6 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
3910, 36, 18, 24, 37, 38imaf1hom 49103 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))))
40 imaidfu.j . . . . . . 7 𝐽 = (Homf𝐷)
41 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
42 imaidfu.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
4340, 41, 42, 19, 25homfval 17598 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤))
442adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸))
45 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (Base‘𝐷) = (Base‘𝐷))
4642oveqi 7362 . . . . . . . . . 10 (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)
4746a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤))
481, 44, 45, 19, 25, 47idfu2nda 49098 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧(2nd𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤)))
4948imaeq1d 6010 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)))
50 ssid 3958 . . . . . . . 8 (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤)
51 resiima 6027 . . . . . . . 8 ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5250, 51ax-mp 5 . . . . . . 7 (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)
5349, 52eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5443, 53eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
5531, 39, 543eqtr4rd 2775 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
5655ralrimivva 3172 . . 3 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
57 fveq2 6822 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
58 df-ov 7352 . . . . . 6 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
5957, 58eqtr4di 2782 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
60 fveq2 6822 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
61 df-ov 7352 . . . . . 6 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
6260, 61eqtr4di 2782 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
6359, 62eqeq12d 2745 . . . 4 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
6463ralxp 5784 . . 3 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
6556, 64sylibr 234 . 2 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
6640, 41homffn 17599 . . . 4 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
6766a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)))
68 fvexd 6837 . . . 4 (𝜑 → (1st𝐼) ∈ V)
6968, 68, 38imasubclem2 49100 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
70 xpss12 5634 . . . 4 ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
7116, 16, 70syl2anc 584 . . 3 (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
72 fvreseq1 6973 . . 3 (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7367, 69, 71, 72syl21anc 837 . 2 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7465, 73mpbird 257 1 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  {csn 4577  cop 4583   ciun 4941   I cid 5513   × cxp 5617  ccnv 5618  ran crn 5620  cres 5621  cima 5622   Fn wfn 6477  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Hom chom 17172  Homf chomf 17572   Func cfunc 17761  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-func 17765  df-idfu 17766
This theorem is referenced by:  imaidfu2  49106
  Copyright terms: Public domain W3C validator