Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu Structured version   Visualization version   GIF version

Theorem imaidfu 49103
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu.s 𝑆 = ((1st𝐼) “ 𝐴)
Assertion
Ref Expression
imaidfu (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Distinct variable groups:   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu
Dummy variables 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaidfu.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 eqidd 2731 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
41, 2, 3idfu1sta 49094 . . . . . . . . . . . 12 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
54adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
65cnveqd 5842 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
7 cnvresid 6598 . . . . . . . . . 10 ( I ↾ (Base‘𝐷)) = ( I ↾ (Base‘𝐷))
86, 7eqtrdi 2781 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) = ( I ↾ (Base‘𝐷)))
98fveq1d 6863 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = (( I ↾ (Base‘𝐷))‘𝑧))
10 imaidfu.s . . . . . . . . . . . . 13 𝑆 = ((1st𝐼) “ 𝐴)
11 imassrn 6045 . . . . . . . . . . . . 13 ((1st𝐼) “ 𝐴) ⊆ ran (1st𝐼)
1210, 11eqsstri 3996 . . . . . . . . . . . 12 𝑆 ⊆ ran (1st𝐼)
134rneqd 5905 . . . . . . . . . . . . 13 (𝜑 → ran (1st𝐼) = ran ( I ↾ (Base‘𝐷)))
14 rnresi 6049 . . . . . . . . . . . . 13 ran ( I ↾ (Base‘𝐷)) = (Base‘𝐷)
1513, 14eqtrdi 2781 . . . . . . . . . . . 12 (𝜑 → ran (1st𝐼) = (Base‘𝐷))
1612, 15sseqtrid 3992 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (Base‘𝐷))
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐷))
18 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1917, 18sseldd 3950 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐷))
20 fvresi 7150 . . . . . . . . 9 (𝑧 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
2119, 20syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑧) = 𝑧)
229, 21eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑧) = 𝑧)
238fveq1d 6863 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = (( I ↾ (Base‘𝐷))‘𝑤))
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2517, 24sseldd 3950 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐷))
26 fvresi 7150 . . . . . . . . 9 (𝑤 ∈ (Base‘𝐷) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2725, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (( I ↾ (Base‘𝐷))‘𝑤) = 𝑤)
2823, 27eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼)‘𝑤) = 𝑤)
2922, 28oveq12d 7408 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) = (𝑧(2nd𝐼)𝑤))
3022, 28oveq12d 7408 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤)) = (𝑧𝐻𝑤))
3129, 30imaeq12d 6035 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
32 f1oi 6841 . . . . . . . 8 ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)
335f1oeq1d 6798 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷)))
3432, 33mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷))
35 f1of1 6802 . . . . . . 7 ((1st𝐼):(Base‘𝐷)–1-1-onto→(Base‘𝐷) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
3634, 35syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼):(Base‘𝐷)–1-1→(Base‘𝐷))
37 fvexd 6876 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (1st𝐼) ∈ V)
38 imaidfu.k . . . . . 6 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
3910, 36, 18, 24, 37, 38imaf1hom 49101 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = ((((1st𝐼)‘𝑧)(2nd𝐼)((1st𝐼)‘𝑤)) “ (((1st𝐼)‘𝑧)𝐻((1st𝐼)‘𝑤))))
40 imaidfu.j . . . . . . 7 𝐽 = (Homf𝐷)
41 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
42 imaidfu.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
4340, 41, 42, 19, 25homfval 17660 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐻𝑤))
442adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐼 ∈ (𝐷 Func 𝐸))
45 eqidd 2731 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (Base‘𝐷) = (Base‘𝐷))
4642oveqi 7403 . . . . . . . . . 10 (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤)
4746a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐷)𝑤))
481, 44, 45, 19, 25, 47idfu2nda 49096 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧(2nd𝐼)𝑤) = ( I ↾ (𝑧𝐻𝑤)))
4948imaeq1d 6033 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)))
50 ssid 3972 . . . . . . . 8 (𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤)
51 resiima 6050 . . . . . . . 8 ((𝑧𝐻𝑤) ⊆ (𝑧𝐻𝑤) → (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5250, 51ax-mp 5 . . . . . . 7 (( I ↾ (𝑧𝐻𝑤)) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤)
5349, 52eqtrdi 2781 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)) = (𝑧𝐻𝑤))
5443, 53eqtr4d 2768 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = ((𝑧(2nd𝐼)𝑤) “ (𝑧𝐻𝑤)))
5531, 39, 543eqtr4rd 2776 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
5655ralrimivva 3181 . . 3 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
57 fveq2 6861 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
58 df-ov 7393 . . . . . 6 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
5957, 58eqtr4di 2783 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
60 fveq2 6861 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
61 df-ov 7393 . . . . . 6 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
6260, 61eqtr4di 2783 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
6359, 62eqeq12d 2746 . . . 4 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
6463ralxp 5808 . . 3 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
6556, 64sylibr 234 . 2 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
6640, 41homffn 17661 . . . 4 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
6766a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)))
68 fvexd 6876 . . . 4 (𝜑 → (1st𝐼) ∈ V)
6968, 68, 38imasubclem2 49098 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
70 xpss12 5656 . . . 4 ((𝑆 ⊆ (Base‘𝐷) ∧ 𝑆 ⊆ (Base‘𝐷)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
7116, 16, 70syl2anc 584 . . 3 (𝜑 → (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
72 fvreseq1 7014 . . 3 (((𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7367, 69, 71, 72syl21anc 837 . 2 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
7465, 73mpbird 257 1 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  {csn 4592  cop 4598   ciun 4958   I cid 5535   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644   Fn wfn 6509  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  Homf chomf 17634   Func cfunc 17823  idfunccidfu 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-func 17827  df-idfu 17828
This theorem is referenced by:  imaidfu2  49104
  Copyright terms: Public domain W3C validator