| Step | Hyp | Ref
| Expression |
| 1 | | imasubc.s |
. . 3
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 2 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 3 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 4 | | imassc.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | 2, 3, 4 | funcf1 17866 |
. . . 4
⊢ (𝜑 → 𝐹:(Base‘𝐷)⟶(Base‘𝐸)) |
| 6 | 5 | fimassd 6724 |
. . 3
⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (Base‘𝐸)) |
| 7 | 1, 6 | eqsstrid 3995 |
. 2
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐸)) |
| 8 | | imasubc.h |
. . . . . . . . 9
⊢ 𝐻 = (Hom ‘𝐷) |
| 9 | | eqid 2734 |
. . . . . . . . 9
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 10 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 11 | 2, 3, 10 | funcf1 17866 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝐹:(Base‘𝐷)⟶(Base‘𝐸)) |
| 12 | 11 | ffnd 6704 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷)) |
| 13 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑚 ∈ (◡𝐹 “ {𝑧})) |
| 14 | | fniniseg 7047 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (◡𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧))) |
| 15 | 14 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (◡𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧)) |
| 16 | 12, 13, 15 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧)) |
| 17 | 16 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷)) |
| 18 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑛 ∈ (◡𝐹 “ {𝑤})) |
| 19 | | fniniseg 7047 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (◡𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤))) |
| 20 | 19 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤)) |
| 21 | 12, 18, 20 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤)) |
| 22 | 21 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷)) |
| 23 | 2, 8, 9, 10, 17, 22 | funcf2 17868 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛))) |
| 24 | 23 | fimassd 6724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ ((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛))) |
| 25 | 16 | simprd 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝐹‘𝑚) = 𝑧) |
| 26 | 21 | simprd 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝐹‘𝑛) = 𝑤) |
| 27 | 25, 26 | oveq12d 7418 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → ((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 28 | 24, 27 | sseqtrd 3993 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 29 | 28 | ralrimivva 3185 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ∀𝑚 ∈ (◡𝐹 “ {𝑧})∀𝑛 ∈ (◡𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 30 | | iunss 5019 |
. . . . . 6
⊢ (∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 31 | | fveq2 6873 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐺‘𝑝) = (𝐺‘〈𝑚, 𝑛〉)) |
| 32 | | df-ov 7403 |
. . . . . . . . . 10
⊢ (𝑚𝐺𝑛) = (𝐺‘〈𝑚, 𝑛〉) |
| 33 | 31, 32 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐺‘𝑝) = (𝑚𝐺𝑛)) |
| 34 | | fveq2 6873 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐻‘𝑝) = (𝐻‘〈𝑚, 𝑛〉)) |
| 35 | | df-ov 7403 |
. . . . . . . . . 10
⊢ (𝑚𝐻𝑛) = (𝐻‘〈𝑚, 𝑛〉) |
| 36 | 34, 35 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐻‘𝑝) = (𝑚𝐻𝑛)) |
| 37 | 33, 36 | imaeq12d 6046 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑚, 𝑛〉 → ((𝐺‘𝑝) “ (𝐻‘𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛))) |
| 38 | 37 | sseq1d 3988 |
. . . . . . 7
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))) |
| 39 | 38 | ralxp 5819 |
. . . . . 6
⊢
(∀𝑝 ∈
((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (◡𝐹 “ {𝑧})∀𝑛 ∈ (◡𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 40 | 30, 39 | bitri 275 |
. . . . 5
⊢ (∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (◡𝐹 “ {𝑧})∀𝑛 ∈ (◡𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 41 | 29, 40 | sylibr 234 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤)) |
| 42 | | relfunc 17862 |
. . . . . . . 8
⊢ Rel
(𝐷 Func 𝐸) |
| 43 | 42 | brrelex1i 5708 |
. . . . . . 7
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 𝐹 ∈ V) |
| 44 | 4, 43 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
| 45 | 44 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐹 ∈ V) |
| 46 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
| 47 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ 𝑆) |
| 48 | | imasubc.k |
. . . . 5
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 49 | 45, 45, 46, 47, 48 | imasubclem3 48958 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐾𝑤) = ∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 50 | | imassc.j |
. . . . 5
⊢ 𝐽 = (Homf
‘𝐸) |
| 51 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝐸)) |
| 52 | 51, 46 | sseldd 3957 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ (Base‘𝐸)) |
| 53 | 51, 47 | sseldd 3957 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ (Base‘𝐸)) |
| 54 | 50, 3, 9, 52, 53 | homfval 17691 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤)) |
| 55 | 41, 49, 54 | 3sstr4d 4012 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)) |
| 56 | 55 | ralrimivva 3185 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)) |
| 57 | 44, 44, 48 | imasubclem2 48957 |
. . 3
⊢ (𝜑 → 𝐾 Fn (𝑆 × 𝑆)) |
| 58 | 50, 3 | homffn 17692 |
. . . 4
⊢ 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸)) |
| 59 | 58 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸))) |
| 60 | | fvexd 6888 |
. . 3
⊢ (𝜑 → (Base‘𝐸) ∈ V) |
| 61 | 57, 59, 60 | isssc 17820 |
. 2
⊢ (𝜑 → (𝐾 ⊆cat 𝐽 ↔ (𝑆 ⊆ (Base‘𝐸) ∧ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)))) |
| 62 | 7, 56, 61 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐾 ⊆cat 𝐽) |