Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassc Structured version   Visualization version   GIF version

Theorem imassc 48963
Description: An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imassc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imassc (𝜑𝐾cat 𝐽)
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imassc
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2734 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 imassc.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
52, 3, 4funcf1 17866 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
65fimassd 6724 . . 3 (𝜑 → (𝐹𝐴) ⊆ (Base‘𝐸))
71, 6eqsstrid 3995 . 2 (𝜑𝑆 ⊆ (Base‘𝐸))
8 imasubc.h . . . . . . . . 9 𝐻 = (Hom ‘𝐷)
9 eqid 2734 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
104ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Func 𝐸)𝐺)
112, 3, 10funcf1 17866 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹:(Base‘𝐷)⟶(Base‘𝐸))
1211ffnd 6704 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
13 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
14 fniniseg 7047 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
1514biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1612, 13, 15syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1716simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
18 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
19 fniniseg 7047 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
2019biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2112, 18, 20syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2221simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
232, 8, 9, 10, 17, 22funcf2 17868 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2423fimassd 6724 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2516simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
2621simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
2725, 26oveq12d 7418 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
2824, 27sseqtrd 3993 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
2928ralrimivva 3185 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
30 iunss 5019 . . . . . 6 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
31 fveq2 6873 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
32 df-ov 7403 . . . . . . . . . 10 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
3331, 32eqtr4di 2787 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
34 fveq2 6873 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
35 df-ov 7403 . . . . . . . . . 10 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
3634, 35eqtr4di 2787 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
3733, 36imaeq12d 6046 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
3837sseq1d 3988 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)))
3938ralxp 5819 . . . . . 6 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4030, 39bitri 275 . . . . 5 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4129, 40sylibr 234 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
42 relfunc 17862 . . . . . . . 8 Rel (𝐷 Func 𝐸)
4342brrelex1i 5708 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
444, 43syl 17 . . . . . 6 (𝜑𝐹 ∈ V)
4544adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
46 simprl 770 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
47 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
48 imasubc.k . . . . 5 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4945, 45, 46, 47, 48imasubclem3 48958 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
50 imassc.j . . . . 5 𝐽 = (Homf𝐸)
517adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐸))
5251, 46sseldd 3957 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐸))
5351, 47sseldd 3957 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐸))
5450, 3, 9, 52, 53homfval 17691 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
5541, 49, 543sstr4d 4012 . . 3 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5655ralrimivva 3185 . 2 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5744, 44, 48imasubclem2 48957 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
5850, 3homffn 17692 . . . 4 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸))
5958a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐸) × (Base‘𝐸)))
60 fvexd 6888 . . 3 (𝜑 → (Base‘𝐸) ∈ V)
6157, 59, 60isssc 17820 . 2 (𝜑 → (𝐾cat 𝐽 ↔ (𝑆 ⊆ (Base‘𝐸) ∧ ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))))
627, 56, 61mpbir2and 713 1 (𝜑𝐾cat 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  wss 3924  {csn 4599  cop 4605   ciun 4965   class class class wbr 5117   × cxp 5650  ccnv 5651  cima 5655   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  Homf chomf 17665  cat cssc 17807   Func cfunc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-homf 17669  df-ssc 17810  df-func 17858
This theorem is referenced by:  imasubc3  48966
  Copyright terms: Public domain W3C validator