Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassc Structured version   Visualization version   GIF version

Theorem imassc 49264
Description: An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imassc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imassc (𝜑𝐾cat 𝐽)
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imassc
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2731 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 imassc.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
52, 3, 4funcf1 17773 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
65fimassd 6672 . . 3 (𝜑 → (𝐹𝐴) ⊆ (Base‘𝐸))
71, 6eqsstrid 3968 . 2 (𝜑𝑆 ⊆ (Base‘𝐸))
8 imasubc.h . . . . . . . . 9 𝐻 = (Hom ‘𝐷)
9 eqid 2731 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
104ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Func 𝐸)𝐺)
112, 3, 10funcf1 17773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹:(Base‘𝐷)⟶(Base‘𝐸))
1211ffnd 6652 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
13 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
14 fniniseg 6993 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
1514biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1612, 13, 15syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1716simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
18 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
19 fniniseg 6993 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
2019biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2112, 18, 20syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2221simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
232, 8, 9, 10, 17, 22funcf2 17775 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2423fimassd 6672 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2516simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
2621simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
2725, 26oveq12d 7364 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
2824, 27sseqtrd 3966 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
2928ralrimivva 3175 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
30 iunss 4992 . . . . . 6 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
31 fveq2 6822 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
32 df-ov 7349 . . . . . . . . . 10 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
3331, 32eqtr4di 2784 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
34 fveq2 6822 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
35 df-ov 7349 . . . . . . . . . 10 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
3634, 35eqtr4di 2784 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
3733, 36imaeq12d 6009 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
3837sseq1d 3961 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)))
3938ralxp 5780 . . . . . 6 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4030, 39bitri 275 . . . . 5 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4129, 40sylibr 234 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
42 relfunc 17769 . . . . . . . 8 Rel (𝐷 Func 𝐸)
4342brrelex1i 5670 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
444, 43syl 17 . . . . . 6 (𝜑𝐹 ∈ V)
4544adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
46 simprl 770 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
47 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
48 imasubc.k . . . . 5 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4945, 45, 46, 47, 48imasubclem3 49217 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
50 imassc.j . . . . 5 𝐽 = (Homf𝐸)
517adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐸))
5251, 46sseldd 3930 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐸))
5351, 47sseldd 3930 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐸))
5450, 3, 9, 52, 53homfval 17598 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
5541, 49, 543sstr4d 3985 . . 3 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5655ralrimivva 3175 . 2 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5744, 44, 48imasubclem2 49216 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
5850, 3homffn 17599 . . . 4 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸))
5958a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐸) × (Base‘𝐸)))
60 fvexd 6837 . . 3 (𝜑 → (Base‘𝐸) ∈ V)
6157, 59, 60isssc 17727 . 2 (𝜑 → (𝐾cat 𝐽 ↔ (𝑆 ⊆ (Base‘𝐸) ∧ ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))))
627, 56, 61mpbir2and 713 1 (𝜑𝐾cat 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  Homf chomf 17572  cat cssc 17714   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-homf 17576  df-ssc 17717  df-func 17765
This theorem is referenced by:  imasubc3  49267
  Copyright terms: Public domain W3C validator