Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassc Structured version   Visualization version   GIF version

Theorem imassc 49132
Description: An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imassc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imassc (𝜑𝐾cat 𝐽)
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imassc
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2730 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 imassc.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
52, 3, 4funcf1 17834 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
65fimassd 6711 . . 3 (𝜑 → (𝐹𝐴) ⊆ (Base‘𝐸))
71, 6eqsstrid 3987 . 2 (𝜑𝑆 ⊆ (Base‘𝐸))
8 imasubc.h . . . . . . . . 9 𝐻 = (Hom ‘𝐷)
9 eqid 2730 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
104ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Func 𝐸)𝐺)
112, 3, 10funcf1 17834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹:(Base‘𝐷)⟶(Base‘𝐸))
1211ffnd 6691 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
13 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
14 fniniseg 7034 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
1514biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1612, 13, 15syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1716simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
18 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
19 fniniseg 7034 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
2019biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2112, 18, 20syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2221simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
232, 8, 9, 10, 17, 22funcf2 17836 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2423fimassd 6711 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2516simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
2621simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
2725, 26oveq12d 7407 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
2824, 27sseqtrd 3985 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
2928ralrimivva 3181 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
30 iunss 5011 . . . . . 6 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
31 fveq2 6860 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
32 df-ov 7392 . . . . . . . . . 10 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
3331, 32eqtr4di 2783 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
34 fveq2 6860 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
35 df-ov 7392 . . . . . . . . . 10 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
3634, 35eqtr4di 2783 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
3733, 36imaeq12d 6034 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
3837sseq1d 3980 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)))
3938ralxp 5807 . . . . . 6 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4030, 39bitri 275 . . . . 5 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4129, 40sylibr 234 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
42 relfunc 17830 . . . . . . . 8 Rel (𝐷 Func 𝐸)
4342brrelex1i 5696 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
444, 43syl 17 . . . . . 6 (𝜑𝐹 ∈ V)
4544adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
46 simprl 770 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
47 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
48 imasubc.k . . . . 5 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4945, 45, 46, 47, 48imasubclem3 49085 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
50 imassc.j . . . . 5 𝐽 = (Homf𝐸)
517adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐸))
5251, 46sseldd 3949 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐸))
5351, 47sseldd 3949 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐸))
5450, 3, 9, 52, 53homfval 17659 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
5541, 49, 543sstr4d 4004 . . 3 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5655ralrimivva 3181 . 2 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5744, 44, 48imasubclem2 49084 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
5850, 3homffn 17660 . . . 4 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸))
5958a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐸) × (Base‘𝐸)))
60 fvexd 6875 . . 3 (𝜑 → (Base‘𝐸) ∈ V)
6157, 59, 60isssc 17788 . 2 (𝜑 → (𝐾cat 𝐽 ↔ (𝑆 ⊆ (Base‘𝐸) ∧ ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))))
627, 56, 61mpbir2and 713 1 (𝜑𝐾cat 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3916  {csn 4591  cop 4597   ciun 4957   class class class wbr 5109   × cxp 5638  ccnv 5639  cima 5643   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  Homf chomf 17633  cat cssc 17775   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-homf 17637  df-ssc 17778  df-func 17826
This theorem is referenced by:  imasubc3  49135
  Copyright terms: Public domain W3C validator