Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imassc Structured version   Visualization version   GIF version

Theorem imassc 49148
Description: An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imassc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imassc (𝜑𝐾cat 𝐽)
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imassc
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 imassc.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
52, 3, 4funcf1 17773 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
65fimassd 6673 . . 3 (𝜑 → (𝐹𝐴) ⊆ (Base‘𝐸))
71, 6eqsstrid 3974 . 2 (𝜑𝑆 ⊆ (Base‘𝐸))
8 imasubc.h . . . . . . . . 9 𝐻 = (Hom ‘𝐷)
9 eqid 2729 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
104ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Func 𝐸)𝐺)
112, 3, 10funcf1 17773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹:(Base‘𝐷)⟶(Base‘𝐸))
1211ffnd 6653 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
13 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
14 fniniseg 6994 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
1514biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1612, 13, 15syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
1716simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
18 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
19 fniniseg 6994 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
2019biimpa 476 . . . . . . . . . . 11 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2112, 18, 20syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
2221simpld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
232, 8, 9, 10, 17, 22funcf2 17775 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)⟶((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2423fimassd 6673 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
2516simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
2621simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
2725, 26oveq12d 7367 . . . . . . 7 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
2824, 27sseqtrd 3972 . . . . . 6 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
2928ralrimivva 3172 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
30 iunss 4994 . . . . . 6 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
31 fveq2 6822 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
32 df-ov 7352 . . . . . . . . . 10 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
3331, 32eqtr4di 2782 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
34 fveq2 6822 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
35 df-ov 7352 . . . . . . . . . 10 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
3634, 35eqtr4di 2782 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
3733, 36imaeq12d 6012 . . . . . . . 8 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
3837sseq1d 3967 . . . . . . 7 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤)))
3938ralxp 5784 . . . . . 6 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4030, 39bitri 275 . . . . 5 ( 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
4129, 40sylibr 234 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) ⊆ (𝑧(Hom ‘𝐸)𝑤))
42 relfunc 17769 . . . . . . . 8 Rel (𝐷 Func 𝐸)
4342brrelex1i 5675 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
444, 43syl 17 . . . . . 6 (𝜑𝐹 ∈ V)
4544adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
46 simprl 770 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
47 simprr 772 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
48 imasubc.k . . . . 5 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4945, 45, 46, 47, 48imasubclem3 49101 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
50 imassc.j . . . . 5 𝐽 = (Homf𝐸)
517adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆 ⊆ (Base‘𝐸))
5251, 46sseldd 3936 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (Base‘𝐸))
5351, 47sseldd 3936 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (Base‘𝐸))
5450, 3, 9, 52, 53homfval 17598 . . . 4 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
5541, 49, 543sstr4d 3991 . . 3 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5655ralrimivva 3172 . 2 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
5744, 44, 48imasubclem2 49100 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
5850, 3homffn 17599 . . . 4 𝐽 Fn ((Base‘𝐸) × (Base‘𝐸))
5958a1i 11 . . 3 (𝜑𝐽 Fn ((Base‘𝐸) × (Base‘𝐸)))
60 fvexd 6837 . . 3 (𝜑 → (Base‘𝐸) ∈ V)
6157, 59, 60isssc 17727 . 2 (𝜑 → (𝐾cat 𝐽 ↔ (𝑆 ⊆ (Base‘𝐸) ∧ ∀𝑧𝑆𝑤𝑆 (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))))
627, 56, 61mpbir2and 713 1 (𝜑𝐾cat 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  {csn 4577  cop 4583   ciun 4941   class class class wbr 5092   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  Homf chomf 17572  cat cssc 17714   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-homf 17576  df-ssc 17717  df-func 17765
This theorem is referenced by:  imasubc3  49151
  Copyright terms: Public domain W3C validator