| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsn | Structured version Visualization version GIF version | ||
| Description: The indicator function of a singleton. (Contributed by Thierry Arnoux, 15-Feb-2026.) |
| Ref | Expression |
|---|---|
| indsn | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → ((𝟭‘𝑂)‘{𝑋}) = (𝑥 ∈ 𝑂 ↦ if(𝑥 = 𝑋, 1, 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → 𝑋 ∈ 𝑂) | |
| 2 | 1 | snssd 4762 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → {𝑋} ⊆ 𝑂) |
| 3 | indval 32860 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ {𝑋} ⊆ 𝑂) → ((𝟭‘𝑂)‘{𝑋}) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ {𝑋}, 1, 0))) | |
| 4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → ((𝟭‘𝑂)‘{𝑋}) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ {𝑋}, 1, 0))) |
| 5 | velsn 4593 | . . . . 5 ⊢ (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)) |
| 7 | 6 | ifbid 4500 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → if(𝑥 ∈ {𝑋}, 1, 0) = if(𝑥 = 𝑋, 1, 0)) |
| 8 | 7 | mpteq2dv 5189 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ {𝑋}, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 = 𝑋, 1, 0))) |
| 9 | 4, 8 | eqtrd 2768 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂) → ((𝟭‘𝑂)‘{𝑋}) = (𝑥 ∈ 𝑂 ↦ if(𝑥 = 𝑋, 1, 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ifcif 4476 {csn 4577 ↦ cmpt 5176 ‘cfv 6489 0cc0 11017 1c1 11018 𝟭cind 32857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ind 32858 |
| This theorem is referenced by: esplyfval0 33650 |
| Copyright terms: Public domain | W3C validator |