Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6809 |
. . 3
⊢ (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙))) |
2 | | prodindf.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
3 | | prodindf.1 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
4 | | prodindf.3 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
5 | | indf 32028 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
6 | 3, 4, 5 | syl2anc 585 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
7 | 6 | adantr 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
8 | | prodindf.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
9 | 8 | ffvelcdmda 6993 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝑂) |
10 | 7, 9 | ffvelcdmd 6994 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) ∈ {0, 1}) |
11 | 1, 2, 10 | fprodex01 31184 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0)) |
12 | | 2fveq3 6809 |
. . . . . 6
⊢ (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘))) |
13 | 12 | eqeq1d 2738 |
. . . . 5
⊢ (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
14 | 13 | cbvralvw 3222 |
. . . 4
⊢
(∀𝑙 ∈
𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1) |
15 | 14 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
16 | 15 | ifbid 4488 |
. 2
⊢ (𝜑 → if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0) = if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0)) |
17 | | eqid 2736 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
18 | 17 | rnmptss 7028 |
. . . . 5
⊢
(∀𝑘 ∈
𝐴 (𝐹‘𝑘) ∈ 𝐵 → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
19 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
20 | | nfmpt1 5189 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
21 | 20 | nfrn 5873 |
. . . . . . . . 9
⊢
Ⅎ𝑘ran
(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
22 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐵 |
23 | 21, 22 | nfss 3918 |
. . . . . . . 8
⊢
Ⅎ𝑘ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 |
24 | 19, 23 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
25 | | simplr 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
26 | 8 | feqmptd 6869 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
27 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑘 = 𝑘) |
28 | 26, 27 | fveq12d 6811 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
29 | 28 | ralrimivw 3144 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
30 | 29 | r19.21bi 3231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
31 | 8 | ffnd 6631 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐴) |
32 | 26 | fneq1d 6557 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴)) |
33 | 31, 32 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
34 | 33 | adantr 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
35 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
36 | | fnfvelrn 6990 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
37 | 34, 35, 36 | syl2anc 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
38 | 30, 37 | eqeltrd 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
39 | 38 | adantlr 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
40 | 25, 39 | sseldd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
41 | 40 | ex 414 |
. . . . . . 7
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → (𝑘 ∈ 𝐴 → (𝐹‘𝑘) ∈ 𝐵)) |
42 | 24, 41 | ralrimi 3237 |
. . . . . 6
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵) |
43 | 42 | ex 414 |
. . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
44 | 18, 43 | impbid2 225 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
45 | 3 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ 𝑉) |
46 | 4 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑂) |
47 | | ind1a 32032 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ (𝐹‘𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
48 | 45, 46, 9, 47 | syl3anc 1371 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
49 | 48 | ralbidva 3169 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
50 | 26 | rneqd 5859 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
51 | 50 | sseq1d 3957 |
. . . 4
⊢ (𝜑 → (ran 𝐹 ⊆ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
52 | 44, 49, 51 | 3bitr4d 311 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ran 𝐹 ⊆ 𝐵)) |
53 | 52 | ifbid 4488 |
. 2
⊢ (𝜑 → if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |
54 | 11, 16, 53 | 3eqtrd 2780 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |