Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   GIF version

Theorem prodindf 32036
Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1 (𝜑𝑂𝑉)
prodindf.2 (𝜑𝐴 ∈ Fin)
prodindf.3 (𝜑𝐵𝑂)
prodindf.4 (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
prodindf (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑂   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem prodindf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6809 . . 3 (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)))
2 prodindf.2 . . 3 (𝜑𝐴 ∈ Fin)
3 prodindf.1 . . . . . 6 (𝜑𝑂𝑉)
4 prodindf.3 . . . . . 6 (𝜑𝐵𝑂)
5 indf 32028 . . . . . 6 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
63, 4, 5syl2anc 585 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
76adantr 482 . . . 4 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
8 prodindf.4 . . . . 5 (𝜑𝐹:𝐴𝑂)
98ffvelcdmda 6993 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝑂)
107, 9ffvelcdmd 6994 . . 3 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) ∈ {0, 1})
111, 2, 10fprodex01 31184 . 2 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0))
12 2fveq3 6809 . . . . . 6 (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)))
1312eqeq1d 2738 . . . . 5 (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1413cbvralvw 3222 . . . 4 (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1)
1514a1i 11 . . 3 (𝜑 → (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1615ifbid 4488 . 2 (𝜑 → if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0) = if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0))
17 eqid 2736 . . . . . 6 (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴 ↦ (𝐹𝑘))
1817rnmptss 7028 . . . . 5 (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
19 nfv 1915 . . . . . . . 8 𝑘𝜑
20 nfmpt1 5189 . . . . . . . . . 10 𝑘(𝑘𝐴 ↦ (𝐹𝑘))
2120nfrn 5873 . . . . . . . . 9 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘))
22 nfcv 2905 . . . . . . . . 9 𝑘𝐵
2321, 22nfss 3918 . . . . . . . 8 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵
2419, 23nfan 1900 . . . . . . 7 𝑘(𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
25 simplr 767 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
268feqmptd 6869 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
27 eqidd 2737 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
2826, 27fveq12d 6811 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
2928ralrimivw 3144 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3029r19.21bi 3231 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
318ffnd 6631 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
3226fneq1d 6557 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴))
3331, 32mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
3433adantr 482 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
35 simpr 486 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 fnfvelrn 6990 . . . . . . . . . . . 12 (((𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3734, 35, 36syl2anc 585 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3830, 37eqeltrd 2837 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3938adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4025, 39sseldd 3927 . . . . . . . 8 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
4140ex 414 . . . . . . 7 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → (𝑘𝐴 → (𝐹𝑘) ∈ 𝐵))
4224, 41ralrimi 3237 . . . . . 6 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
4342ex 414 . . . . 5 (𝜑 → (ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵 → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
4418, 43impbid2 225 . . . 4 (𝜑 → (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
453adantr 482 . . . . . 6 ((𝜑𝑘𝐴) → 𝑂𝑉)
464adantr 482 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑂)
47 ind1a 32032 . . . . . 6 ((𝑂𝑉𝐵𝑂 ∧ (𝐹𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4845, 46, 9, 47syl3anc 1371 . . . . 5 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4948ralbidva 3169 . . . 4 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
5026rneqd 5859 . . . . 5 (𝜑 → ran 𝐹 = ran (𝑘𝐴 ↦ (𝐹𝑘)))
5150sseq1d 3957 . . . 4 (𝜑 → (ran 𝐹𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
5244, 49, 513bitr4d 311 . . 3 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ran 𝐹𝐵))
5352ifbid 4488 . 2 (𝜑 → if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0) = if(ran 𝐹𝐵, 1, 0))
5411, 16, 533eqtrd 2780 1 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  wss 3892  ifcif 4465  {cpr 4567  cmpt 5164  ran crn 5601   Fn wfn 6453  wf 6454  cfv 6458  Fincfn 8764  0cc0 10917  1c1 10918  cprod 15660  𝟭cind 32023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-prod 15661  df-ind 32024
This theorem is referenced by:  hashreprin  32645
  Copyright terms: Public domain W3C validator