Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   GIF version

Theorem prodindf 32916
Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1 (𝜑𝑂𝑉)
prodindf.2 (𝜑𝐴 ∈ Fin)
prodindf.3 (𝜑𝐵𝑂)
prodindf.4 (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
prodindf (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑂   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem prodindf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6884 . . 3 (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)))
2 prodindf.2 . . 3 (𝜑𝐴 ∈ Fin)
3 prodindf.1 . . . . . 6 (𝜑𝑂𝑉)
4 prodindf.3 . . . . . 6 (𝜑𝐵𝑂)
5 indf 32908 . . . . . 6 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
63, 4, 5syl2anc 584 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
76adantr 481 . . . 4 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
8 prodindf.4 . . . . 5 (𝜑𝐹:𝐴𝑂)
98ffvelcdmda 7072 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝑂)
107, 9ffvelcdmd 7073 . . 3 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) ∈ {0, 1})
111, 2, 10fprodex01 31966 . 2 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0))
12 2fveq3 6884 . . . . . 6 (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)))
1312eqeq1d 2734 . . . . 5 (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1413cbvralvw 3234 . . . 4 (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1)
1514a1i 11 . . 3 (𝜑 → (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1615ifbid 4546 . 2 (𝜑 → if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0) = if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0))
17 eqid 2732 . . . . . 6 (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴 ↦ (𝐹𝑘))
1817rnmptss 7107 . . . . 5 (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
19 nfv 1917 . . . . . . . 8 𝑘𝜑
20 nfmpt1 5250 . . . . . . . . . 10 𝑘(𝑘𝐴 ↦ (𝐹𝑘))
2120nfrn 5944 . . . . . . . . 9 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘))
22 nfcv 2903 . . . . . . . . 9 𝑘𝐵
2321, 22nfss 3971 . . . . . . . 8 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵
2419, 23nfan 1902 . . . . . . 7 𝑘(𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
25 simplr 767 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
268feqmptd 6947 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
27 eqidd 2733 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
2826, 27fveq12d 6886 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
2928ralrimivw 3150 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3029r19.21bi 3248 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
318ffnd 6706 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
3226fneq1d 6632 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴))
3331, 32mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
3433adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
35 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 fnfvelrn 7068 . . . . . . . . . . . 12 (((𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3734, 35, 36syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3830, 37eqeltrd 2833 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3938adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4025, 39sseldd 3980 . . . . . . . 8 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
4140ex 413 . . . . . . 7 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → (𝑘𝐴 → (𝐹𝑘) ∈ 𝐵))
4224, 41ralrimi 3254 . . . . . 6 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
4342ex 413 . . . . 5 (𝜑 → (ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵 → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
4418, 43impbid2 225 . . . 4 (𝜑 → (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
453adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → 𝑂𝑉)
464adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑂)
47 ind1a 32912 . . . . . 6 ((𝑂𝑉𝐵𝑂 ∧ (𝐹𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4845, 46, 9, 47syl3anc 1371 . . . . 5 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4948ralbidva 3175 . . . 4 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
5026rneqd 5930 . . . . 5 (𝜑 → ran 𝐹 = ran (𝑘𝐴 ↦ (𝐹𝑘)))
5150sseq1d 4010 . . . 4 (𝜑 → (ran 𝐹𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
5244, 49, 513bitr4d 310 . . 3 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ran 𝐹𝐵))
5352ifbid 4546 . 2 (𝜑 → if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0) = if(ran 𝐹𝐵, 1, 0))
5411, 16, 533eqtrd 2776 1 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wss 3945  ifcif 4523  {cpr 4625  cmpt 5225  ran crn 5671   Fn wfn 6528  wf 6529  cfv 6533  Fincfn 8924  0cc0 11094  1c1 11095  cprod 15833  𝟭cind 32903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-rp 12959  df-fz 13469  df-fzo 13612  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-clim 15416  df-prod 15834  df-ind 32904
This theorem is referenced by:  hashreprin  33527
  Copyright terms: Public domain W3C validator