Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   GIF version

Theorem prodindf 34004
Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1 (𝜑𝑂𝑉)
prodindf.2 (𝜑𝐴 ∈ Fin)
prodindf.3 (𝜑𝐵𝑂)
prodindf.4 (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
prodindf (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑂   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem prodindf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6912 . . 3 (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)))
2 prodindf.2 . . 3 (𝜑𝐴 ∈ Fin)
3 prodindf.1 . . . . . 6 (𝜑𝑂𝑉)
4 prodindf.3 . . . . . 6 (𝜑𝐵𝑂)
5 indf 33996 . . . . . 6 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
63, 4, 5syl2anc 584 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
76adantr 480 . . . 4 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
8 prodindf.4 . . . . 5 (𝜑𝐹:𝐴𝑂)
98ffvelcdmda 7104 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝑂)
107, 9ffvelcdmd 7105 . . 3 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) ∈ {0, 1})
111, 2, 10fprodex01 32832 . 2 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0))
12 2fveq3 6912 . . . . . 6 (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)))
1312eqeq1d 2737 . . . . 5 (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1413cbvralvw 3235 . . . 4 (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1)
1514a1i 11 . . 3 (𝜑 → (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1615ifbid 4554 . 2 (𝜑 → if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0) = if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0))
17 eqid 2735 . . . . . 6 (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴 ↦ (𝐹𝑘))
1817rnmptss 7143 . . . . 5 (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
19 nfv 1912 . . . . . . . 8 𝑘𝜑
20 nfmpt1 5256 . . . . . . . . . 10 𝑘(𝑘𝐴 ↦ (𝐹𝑘))
2120nfrn 5966 . . . . . . . . 9 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘))
22 nfcv 2903 . . . . . . . . 9 𝑘𝐵
2321, 22nfss 3988 . . . . . . . 8 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵
2419, 23nfan 1897 . . . . . . 7 𝑘(𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
25 simplr 769 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
268feqmptd 6977 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
27 eqidd 2736 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
2826, 27fveq12d 6914 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
2928ralrimivw 3148 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3029r19.21bi 3249 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
318ffnd 6738 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
3226fneq1d 6662 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴))
3331, 32mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
3433adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 fnfvelrn 7100 . . . . . . . . . . . 12 (((𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3734, 35, 36syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3830, 37eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3938adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4025, 39sseldd 3996 . . . . . . . 8 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
4140ex 412 . . . . . . 7 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → (𝑘𝐴 → (𝐹𝑘) ∈ 𝐵))
4224, 41ralrimi 3255 . . . . . 6 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
4342ex 412 . . . . 5 (𝜑 → (ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵 → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
4418, 43impbid2 226 . . . 4 (𝜑 → (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
453adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝑂𝑉)
464adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑂)
47 ind1a 34000 . . . . . 6 ((𝑂𝑉𝐵𝑂 ∧ (𝐹𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4845, 46, 9, 47syl3anc 1370 . . . . 5 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4948ralbidva 3174 . . . 4 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
5026rneqd 5952 . . . . 5 (𝜑 → ran 𝐹 = ran (𝑘𝐴 ↦ (𝐹𝑘)))
5150sseq1d 4027 . . . 4 (𝜑 → (ran 𝐹𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
5244, 49, 513bitr4d 311 . . 3 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ran 𝐹𝐵))
5352ifbid 4554 . 2 (𝜑 → if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0) = if(ran 𝐹𝐵, 1, 0))
5411, 16, 533eqtrd 2779 1 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  ifcif 4531  {cpr 4633  cmpt 5231  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  Fincfn 8984  0cc0 11153  1c1 11154  cprod 15936  𝟭cind 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-ind 33992
This theorem is referenced by:  hashreprin  34614
  Copyright terms: Public domain W3C validator