Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   GIF version

Theorem prodindf 33868
Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1 (𝜑𝑂𝑉)
prodindf.2 (𝜑𝐴 ∈ Fin)
prodindf.3 (𝜑𝐵𝑂)
prodindf.4 (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
prodindf (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑂   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem prodindf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6897 . . 3 (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)))
2 prodindf.2 . . 3 (𝜑𝐴 ∈ Fin)
3 prodindf.1 . . . . . 6 (𝜑𝑂𝑉)
4 prodindf.3 . . . . . 6 (𝜑𝐵𝑂)
5 indf 33860 . . . . . 6 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
63, 4, 5syl2anc 582 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
76adantr 479 . . . 4 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
8 prodindf.4 . . . . 5 (𝜑𝐹:𝐴𝑂)
98ffvelcdmda 7089 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝑂)
107, 9ffvelcdmd 7090 . . 3 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) ∈ {0, 1})
111, 2, 10fprodex01 32728 . 2 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0))
12 2fveq3 6897 . . . . . 6 (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)))
1312eqeq1d 2728 . . . . 5 (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1413cbvralvw 3225 . . . 4 (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1)
1514a1i 11 . . 3 (𝜑 → (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1615ifbid 4548 . 2 (𝜑 → if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0) = if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0))
17 eqid 2726 . . . . . 6 (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴 ↦ (𝐹𝑘))
1817rnmptss 7128 . . . . 5 (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
19 nfv 1910 . . . . . . . 8 𝑘𝜑
20 nfmpt1 5253 . . . . . . . . . 10 𝑘(𝑘𝐴 ↦ (𝐹𝑘))
2120nfrn 5950 . . . . . . . . 9 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘))
22 nfcv 2892 . . . . . . . . 9 𝑘𝐵
2321, 22nfss 3973 . . . . . . . 8 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵
2419, 23nfan 1895 . . . . . . 7 𝑘(𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
25 simplr 767 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
268feqmptd 6962 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
27 eqidd 2727 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
2826, 27fveq12d 6899 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
2928ralrimivw 3140 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3029r19.21bi 3239 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
318ffnd 6720 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
3226fneq1d 6644 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴))
3331, 32mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
3433adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
35 simpr 483 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 fnfvelrn 7085 . . . . . . . . . . . 12 (((𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3734, 35, 36syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3830, 37eqeltrd 2826 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
3938adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4025, 39sseldd 3981 . . . . . . . 8 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
4140ex 411 . . . . . . 7 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → (𝑘𝐴 → (𝐹𝑘) ∈ 𝐵))
4224, 41ralrimi 3245 . . . . . 6 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
4342ex 411 . . . . 5 (𝜑 → (ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵 → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
4418, 43impbid2 225 . . . 4 (𝜑 → (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
453adantr 479 . . . . . 6 ((𝜑𝑘𝐴) → 𝑂𝑉)
464adantr 479 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑂)
47 ind1a 33864 . . . . . 6 ((𝑂𝑉𝐵𝑂 ∧ (𝐹𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4845, 46, 9, 47syl3anc 1368 . . . . 5 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
4948ralbidva 3166 . . . 4 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
5026rneqd 5936 . . . . 5 (𝜑 → ran 𝐹 = ran (𝑘𝐴 ↦ (𝐹𝑘)))
5150sseq1d 4012 . . . 4 (𝜑 → (ran 𝐹𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
5244, 49, 513bitr4d 310 . . 3 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ran 𝐹𝐵))
5352ifbid 4548 . 2 (𝜑 → if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0) = if(ran 𝐹𝐵, 1, 0))
5411, 16, 533eqtrd 2770 1 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wss 3948  ifcif 4525  {cpr 4627  cmpt 5228  ran crn 5675   Fn wfn 6540  wf 6541  cfv 6545  Fincfn 8965  0cc0 11148  1c1 11149  cprod 15901  𝟭cind 33855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-inf2 9676  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-sup 9477  df-oi 9545  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-n0 12518  df-z 12604  df-uz 12868  df-rp 13022  df-fz 13532  df-fzo 13675  df-seq 14015  df-exp 14075  df-hash 14342  df-cj 15098  df-re 15099  df-im 15100  df-sqrt 15234  df-abs 15235  df-clim 15484  df-prod 15902  df-ind 33856
This theorem is referenced by:  hashreprin  34478
  Copyright terms: Public domain W3C validator