| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6910 |
. . 3
⊢ (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙))) |
| 2 | | prodindf.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 3 | | prodindf.1 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| 4 | | prodindf.3 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
| 5 | | indf 32841 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
| 8 | | prodindf.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
| 9 | 8 | ffvelcdmda 7103 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝑂) |
| 10 | 7, 9 | ffvelcdmd 7104 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) ∈ {0, 1}) |
| 11 | 1, 2, 10 | fprodex01 32828 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0)) |
| 12 | | 2fveq3 6910 |
. . . . . 6
⊢ (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘))) |
| 13 | 12 | eqeq1d 2738 |
. . . . 5
⊢ (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
| 14 | 13 | cbvralvw 3236 |
. . . 4
⊢
(∀𝑙 ∈
𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1) |
| 15 | 14 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
| 16 | 15 | ifbid 4548 |
. 2
⊢ (𝜑 → if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0) = if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0)) |
| 17 | | eqid 2736 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
| 18 | 17 | rnmptss 7142 |
. . . . 5
⊢
(∀𝑘 ∈
𝐴 (𝐹‘𝑘) ∈ 𝐵 → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
| 19 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
| 20 | | nfmpt1 5249 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
| 21 | 20 | nfrn 5962 |
. . . . . . . . 9
⊢
Ⅎ𝑘ran
(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
| 22 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐵 |
| 23 | 21, 22 | nfss 3975 |
. . . . . . . 8
⊢
Ⅎ𝑘ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 |
| 24 | 19, 23 | nfan 1898 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
| 25 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
| 26 | 8 | feqmptd 6976 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 27 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑘 = 𝑘) |
| 28 | 26, 27 | fveq12d 6912 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
| 29 | 28 | ralrimivw 3149 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
| 30 | 29 | r19.21bi 3250 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
| 31 | 8 | ffnd 6736 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 32 | 26 | fneq1d 6660 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴)) |
| 33 | 31, 32 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
| 35 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
| 36 | | fnfvelrn 7099 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 37 | 34, 35, 36 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 38 | 30, 37 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 39 | 38 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 40 | 25, 39 | sseldd 3983 |
. . . . . . . 8
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 41 | 40 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → (𝑘 ∈ 𝐴 → (𝐹‘𝑘) ∈ 𝐵)) |
| 42 | 24, 41 | ralrimi 3256 |
. . . . . 6
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵) |
| 43 | 42 | ex 412 |
. . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
| 44 | 18, 43 | impbid2 226 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
| 45 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ 𝑉) |
| 46 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑂) |
| 47 | | ind1a 32845 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ (𝐹‘𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
| 48 | 45, 46, 9, 47 | syl3anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
| 49 | 48 | ralbidva 3175 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
| 50 | 26 | rneqd 5948 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 51 | 50 | sseq1d 4014 |
. . . 4
⊢ (𝜑 → (ran 𝐹 ⊆ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
| 52 | 44, 49, 51 | 3bitr4d 311 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ran 𝐹 ⊆ 𝐵)) |
| 53 | 52 | ifbid 4548 |
. 2
⊢ (𝜑 → if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |
| 54 | 11, 16, 53 | 3eqtrd 2780 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |