| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2733 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| 2 | | esplyfval0.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 3 | | esplyfval0.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | 1, 2, 3 | esplyval 33648 |
. 2
⊢ (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑅)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |
| 5 | | eqeq2 2745 |
. . . . . . 7
⊢ (𝑘 = 0 →
((♯‘𝑐) = 𝑘 ↔ (♯‘𝑐) = 0)) |
| 6 | 5 | rabbidv 3403 |
. . . . . 6
⊢ (𝑘 = 0 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}) |
| 7 | 6 | imaeq2d 6016 |
. . . . 5
⊢ (𝑘 = 0 →
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0})) |
| 8 | 7 | fveq2d 6835 |
. . . 4
⊢ (𝑘 = 0 →
((𝟭‘{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}))) |
| 9 | 8 | coeq2d 5808 |
. . 3
⊢ (𝑘 = 0 →
((ℤRHom‘𝑅)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0})))) |
| 10 | | fvif 6847 |
. . . . . 6
⊢
((ℤRHom‘𝑅)‘if(𝑓 = (𝐼 × {0}), 1, 0)) = if(𝑓 = (𝐼 × {0}), ((ℤRHom‘𝑅)‘1),
((ℤRHom‘𝑅)‘0)) |
| 11 | | eqid 2733 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 12 | | eqid 2733 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 13 | 11, 12 | zrh1 21458 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘1) = (1r‘𝑅)) |
| 14 | 3, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((ℤRHom‘𝑅)‘1) =
(1r‘𝑅)) |
| 15 | | eqid 2733 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 16 | 11, 15 | zrh0 21459 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = (0g‘𝑅)) |
| 17 | 3, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) =
(0g‘𝑅)) |
| 18 | 14, 17 | ifeq12d 4498 |
. . . . . . 7
⊢ (𝜑 → if(𝑓 = (𝐼 × {0}), ((ℤRHom‘𝑅)‘1),
((ℤRHom‘𝑅)‘0)) = if(𝑓 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
if(𝑓 = (𝐼 × {0}), ((ℤRHom‘𝑅)‘1),
((ℤRHom‘𝑅)‘0)) = if(𝑓 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 20 | 10, 19 | eqtrid 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((ℤRHom‘𝑅)‘if(𝑓 = (𝐼 × {0}), 1, 0)) = if(𝑓 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 21 | 20 | mpteq2dva 5188 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((ℤRHom‘𝑅)‘if(𝑓 = (𝐼 × {0}), 1, 0))) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑓 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 22 | | 1zzd 12513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
1 ∈ ℤ) |
| 23 | | 0zd 12491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℤ) |
| 24 | 22, 23 | ifcld 4523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
if(𝑓 = (𝐼 × {0}), 1, 0) ∈
ℤ) |
| 25 | | fveqeq2 6840 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ →
((♯‘𝑐) = 0
↔ (♯‘∅) = 0)) |
| 26 | | 0elpw 5298 |
. . . . . . . . . . 11
⊢ ∅
∈ 𝒫 𝐼 |
| 27 | 26 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈ 𝒫
𝐼) |
| 28 | | hash0 14281 |
. . . . . . . . . . 11
⊢
(♯‘∅) = 0 |
| 29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘∅) =
0) |
| 30 | | hasheq0 14277 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝒫 𝐼 → ((♯‘𝑐) = 0 ↔ 𝑐 = ∅)) |
| 31 | 30 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝒫 𝐼 ∧ (♯‘𝑐) = 0) → 𝑐 = ∅) |
| 32 | 31 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝒫 𝐼) ∧ (♯‘𝑐) = 0) → 𝑐 = ∅) |
| 33 | 25, 27, 29, 32 | rabeqsnd 4623 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0} = {∅}) |
| 34 | 33 | imaeq2d 6016 |
. . . . . . . 8
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}) = ((𝟭‘𝐼) “ {∅})) |
| 35 | | indf1o 32874 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 36 | | f1of 6771 |
. . . . . . . . . . 11
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 37 | 2, 35, 36 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 38 | 37 | ffnd 6660 |
. . . . . . . . 9
⊢ (𝜑 → (𝟭‘𝐼) Fn 𝒫 𝐼) |
| 39 | 38, 27 | fnimasnd 7308 |
. . . . . . . 8
⊢ (𝜑 → ((𝟭‘𝐼) “ {∅}) =
{((𝟭‘𝐼)‘∅)}) |
| 40 | | indconst0 32867 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → ((𝟭‘𝐼)‘∅) = (𝐼 × {0})) |
| 41 | 2, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝟭‘𝐼)‘∅) = (𝐼 × {0})) |
| 42 | 41 | sneqd 4589 |
. . . . . . . 8
⊢ (𝜑 → {((𝟭‘𝐼)‘∅)} = {(𝐼 × {0})}) |
| 43 | 34, 39, 42 | 3eqtrd 2772 |
. . . . . . 7
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}) = {(𝐼 × {0})}) |
| 44 | 43 | fveq2d 6835 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0})) = ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘{(𝐼 ×
{0})})) |
| 45 | | ovex 7388 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 46 | 45 | rabex 5281 |
. . . . . . 7
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V |
| 47 | | breq1 5098 |
. . . . . . . 8
⊢ (ℎ = (𝐼 × {0}) → (ℎ finSupp 0 ↔ (𝐼 × {0}) finSupp 0)) |
| 48 | | nn0ex 12398 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
| 49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℕ0 ∈
V) |
| 50 | | c0ex 11117 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 51 | 50 | fconst 6717 |
. . . . . . . . . . 11
⊢ (𝐼 × {0}):𝐼⟶{0} |
| 52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 × {0}):𝐼⟶{0}) |
| 53 | | 0nn0 12407 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
| 54 | 53 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℕ0) |
| 55 | 54 | snssd 4762 |
. . . . . . . . . 10
⊢ (𝜑 → {0} ⊆
ℕ0) |
| 56 | 52, 55 | fssd 6676 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × {0}):𝐼⟶ℕ0) |
| 57 | 49, 2, 56 | elmapdd 8774 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 × {0}) ∈ (ℕ0
↑m 𝐼)) |
| 58 | | 0zd 12491 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) |
| 59 | 2, 58 | fczfsuppd 9281 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 × {0}) finSupp 0) |
| 60 | 47, 57, 59 | elrabd 3645 |
. . . . . . 7
⊢ (𝜑 → (𝐼 × {0}) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 61 | | indsn 32873 |
. . . . . . 7
⊢ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V ∧ (𝐼 × {0})
∈ {ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) → ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘{(𝐼 ×
{0})}) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑓 = (𝐼 × {0}), 1, 0))) |
| 62 | 46, 60, 61 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘{(𝐼 ×
{0})}) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑓 = (𝐼 × {0}), 1, 0))) |
| 63 | 44, 62 | eqtrd 2768 |
. . . . 5
⊢ (𝜑 → ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0})) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑓 = (𝐼 × {0}), 1, 0))) |
| 64 | 11 | zrhrhm 21457 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 65 | | zringbas 21399 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
| 66 | | eqid 2733 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 67 | 65, 66 | rhmf 20411 |
. . . . . . 7
⊢
((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 68 | 3, 64, 67 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 69 | 68 | feqmptd 6899 |
. . . . 5
⊢ (𝜑 → (ℤRHom‘𝑅) = (𝑧 ∈ ℤ ↦
((ℤRHom‘𝑅)‘𝑧))) |
| 70 | | fveq2 6831 |
. . . . 5
⊢ (𝑧 = if(𝑓 = (𝐼 × {0}), 1, 0) →
((ℤRHom‘𝑅)‘𝑧) = ((ℤRHom‘𝑅)‘if(𝑓 = (𝐼 × {0}), 1, 0))) |
| 71 | 24, 63, 69, 70 | fmptco 7071 |
. . . 4
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}))) = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
((ℤRHom‘𝑅)‘if(𝑓 = (𝐼 × {0}), 1, 0)))) |
| 72 | | eqid 2733 |
. . . . 5
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 73 | 1 | psrbasfsupp 33621 |
. . . . 5
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 74 | | esplyfval0.0 |
. . . . 5
⊢ 𝑈 = (1r‘(𝐼 mPoly 𝑅)) |
| 75 | 72, 73, 15, 12, 74, 2, 3 | mpl1 21958 |
. . . 4
⊢ (𝜑 → 𝑈 = (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑓 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 76 | 21, 71, 75 | 3eqtr4d 2778 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 0}))) = 𝑈) |
| 77 | 9, 76 | sylan9eqr 2790 |
. 2
⊢ ((𝜑 ∧ 𝑘 = 0) → ((ℤRHom‘𝑅) ∘
((𝟭‘{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0})‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))) = 𝑈) |
| 78 | 74 | fvexi 6845 |
. . 3
⊢ 𝑈 ∈ V |
| 79 | 78 | a1i 11 |
. 2
⊢ (𝜑 → 𝑈 ∈ V) |
| 80 | 4, 77, 54, 79 | fvmptd 6945 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘0) = 𝑈) |