| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsval4a | Structured version Visualization version GIF version | ||
| Description: Same as lgsval4 27228 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsval4.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
| Ref | Expression |
|---|---|
| lgsval4a | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) | |
| 2 | nnz 12550 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
| 4 | nnne0 12220 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 6 | lgsval4.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) | |
| 7 | 6 | lgsval4 27228 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
| 8 | 1, 3, 5, 7 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
| 9 | nngt0 12217 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
| 11 | 0re 11176 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 12 | nnre 12193 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
| 14 | ltnsym 11272 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0)) | |
| 15 | 11, 13, 14 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0)) |
| 16 | 10, 15 | mpd 15 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0) |
| 17 | 16 | intnanrd 489 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
| 18 | 17 | iffalsed 4499 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
| 19 | nnnn0 12449 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 21 | 20 | nn0ge0d 12506 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁) |
| 22 | 13, 21 | absidd 15389 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁) |
| 23 | 22 | fveq2d 6862 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
| 24 | 18, 23 | oveq12d 7405 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁))) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 26 | nnuz 12836 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 27 | 25, 26 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
| 28 | 6 | lgsfcl3 27229 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) |
| 29 | 1, 3, 5, 28 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ) |
| 30 | elfznn 13514 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 31 | ffvelcdm 7053 | . . . . . 6 ⊢ ((𝐹:ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ ℤ) | |
| 32 | 29, 30, 31 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝐹‘𝑥) ∈ ℤ) |
| 33 | zmulcl 12582 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 34 | 33 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
| 35 | 27, 32, 34 | seqcl 13987 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ) |
| 36 | 35 | zcnd 12639 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ) |
| 37 | 36 | mullidd 11192 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
| 38 | 8, 24, 37 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 -cneg 11406 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 ↑cexp 14026 abscabs 15200 ℙcprime 16641 pCnt cpc 16807 /L clgs 27205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-phi 16736 df-pc 16808 df-lgs 27206 |
| This theorem is referenced by: lgsmod 27234 |
| Copyright terms: Public domain | W3C validator |