MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval4a Structured version   Visualization version   GIF version

Theorem lgsval4a 25265
Description: Same as lgsval4 25263 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval4a ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 468 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 11606 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantl 467 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 nnne0 11259 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54adantl 467 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
6 lgsval4.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
76lgsval4 25263 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
81, 3, 5, 7syl3anc 1476 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
9 nngt0 11255 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
109adantl 467 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
11 0re 10246 . . . . . . 7 0 ∈ ℝ
12 nnre 11233 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1312adantl 467 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
14 ltnsym 10341 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1511, 13, 14sylancr 575 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1610, 15mpd 15 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1716intnanrd 477 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4237 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
19 nnnn0 11506 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019adantl 467 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
2120nn0ge0d 11561 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁)
2213, 21absidd 14369 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁)
2322fveq2d 6337 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
2418, 23oveq12d 6814 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁)))
25 simpr 471 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
26 nnuz 11930 . . . . . 6 ℕ = (ℤ‘1)
2725, 26syl6eleq 2860 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
286lgsfcl3 25264 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
291, 3, 5, 28syl3anc 1476 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ)
30 elfznn 12577 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
31 ffvelrn 6502 . . . . . 6 ((𝐹:ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℤ)
3229, 30, 31syl2an 583 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝐹𝑥) ∈ ℤ)
33 zmulcl 11633 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3433adantl 467 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
3527, 32, 34seqcl 13028 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
3635zcnd 11690 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ)
3736mulid2d 10264 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
388, 24, 373eqtrd 2809 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  ifcif 4226   class class class wbr 4787  cmpt 4864  wf 6026  cfv 6030  (class class class)co 6796  cr 10141  0cc0 10142  1c1 10143   · cmul 10147   < clt 10280  -cneg 10473  cn 11226  0cn0 11499  cz 11584  cuz 11893  ...cfz 12533  seqcseq 13008  cexp 13067  abscabs 14182  cprime 15592   pCnt cpc 15748   /L clgs 25240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593  df-phi 15678  df-pc 15749  df-lgs 25241
This theorem is referenced by:  lgsmod  25269
  Copyright terms: Public domain W3C validator