MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval4a Structured version   Visualization version   GIF version

Theorem lgsval4a 25903
Description: Same as lgsval4 25901 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval4a ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 11992 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantl 485 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 nnne0 11659 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
54adantl 485 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
6 lgsval4.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
76lgsval4 25901 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
81, 3, 5, 7syl3anc 1368 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
9 nngt0 11656 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
109adantl 485 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
11 0re 10632 . . . . . . 7 0 ∈ ℝ
12 nnre 11632 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1312adantl 485 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
14 ltnsym 10727 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1511, 13, 14sylancr 590 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0))
1610, 15mpd 15 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1716intnanrd 493 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4436 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
19 nnnn0 11892 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019adantl 485 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
2120nn0ge0d 11946 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁)
2213, 21absidd 14774 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁)
2322fveq2d 6649 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
2418, 23oveq12d 7153 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁)))
25 simpr 488 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
26 nnuz 12269 . . . . . 6 ℕ = (ℤ‘1)
2725, 26eleqtrdi 2900 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
286lgsfcl3 25902 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
291, 3, 5, 28syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ)
30 elfznn 12931 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
31 ffvelrn 6826 . . . . . 6 ((𝐹:ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℤ)
3229, 30, 31syl2an 598 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝐹𝑥) ∈ ℤ)
33 zmulcl 12019 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3433adantl 485 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
3527, 32, 34seqcl 13386 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
3635zcnd 12076 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ)
3736mulid2d 10648 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
388, 24, 373eqtrd 2837 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  -cneg 10860  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cexp 13425  abscabs 14585  cprime 16005   pCnt cpc 16163   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-lgs 25879
This theorem is referenced by:  lgsmod  25907
  Copyright terms: Public domain W3C validator