Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknon1nloop | Structured version Visualization version GIF version |
Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1nloop | ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknon1.c | . . . . 5 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
3 | clwwlknon1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 1, 2, 3 | clwwlknon1 28461 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
6 | df-nel 3050 | . . . . . . . . 9 ⊢ ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸) | |
7 | 6 | biimpi 215 | . . . . . . . 8 ⊢ ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸) |
8 | 7 | olcd 871 | . . . . . . 7 ⊢ ({𝑋} ∉ 𝐸 → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
9 | 8 | ad2antlr 724 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
10 | ianor 979 | . . . . . 6 ⊢ (¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) | |
11 | 9, 10 | sylibr 233 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
12 | 11 | ralrimiva 3103 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
13 | rabeq0 4318 | . . . 4 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅) |
15 | 5, 14 | eqtrd 2778 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
16 | 2 | oveqi 7288 | . . . 4 ⊢ (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1) |
17 | 1 | eleq2i 2830 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
18 | 17 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ 𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺)) |
19 | 18 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺)) |
20 | 19 | intnanrd 490 | . . . . 5 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
21 | clwwlknon0 28457 | . . . . 5 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
23 | 16, 22 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋𝐶1) = ∅) |
24 | 23 | adantr 481 | . 2 ⊢ ((¬ 𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
25 | 15, 24 | pm2.61ian 809 | 1 ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 ∀wral 3064 {crab 3068 ∅c0 4256 {csn 4561 ‘cfv 6433 (class class class)co 7275 1c1 10872 ℕcn 11973 Word cword 14217 〈“cs1 14300 Vtxcvtx 27366 Edgcedg 27417 ClWWalksNOncclwwlknon 28451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-lsw 14266 df-s1 14301 df-clwwlk 28346 df-clwwlkn 28389 df-clwwlknon 28452 |
This theorem is referenced by: clwwlknon1sn 28464 clwwlknon1le1 28465 |
Copyright terms: Public domain | W3C validator |