MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1nloop Structured version   Visualization version   GIF version

Theorem clwwlknon1nloop 30074
Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1nloop ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)

Proof of Theorem clwwlknon1nloop
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clwwlknon1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 clwwlknon1.c . . . . 5 𝐶 = (ClWWalksNOn‘𝐺)
3 clwwlknon1.e . . . . 5 𝐸 = (Edg‘𝐺)
41, 2, 3clwwlknon1 30072 . . . 4 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
54adantr 480 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
6 df-nel 3033 . . . . . . . . 9 ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸)
76biimpi 216 . . . . . . . 8 ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸)
87olcd 874 . . . . . . 7 ({𝑋} ∉ 𝐸 → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
98ad2antlr 727 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
10 ianor 983 . . . . . 6 (¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
119, 10sylibr 234 . . . . 5 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1211ralrimiva 3124 . . . 4 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
13 rabeq0 4338 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1412, 13sylibr 234 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅)
155, 14eqtrd 2766 . 2 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
162oveqi 7359 . . . 4 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
171eleq2i 2823 . . . . . . . 8 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
1817notbii 320 . . . . . . 7 𝑋𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺))
1918biimpi 216 . . . . . 6 𝑋𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺))
2019intnanrd 489 . . . . 5 𝑋𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ))
21 clwwlknon0 30068 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2220, 21syl 17 . . . 4 𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2316, 22eqtrid 2778 . . 3 𝑋𝑉 → (𝑋𝐶1) = ∅)
2423adantr 480 . 2 ((¬ 𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
2515, 24pm2.61ian 811 1 ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wnel 3032  wral 3047  {crab 3395  c0 4283  {csn 4576  cfv 6481  (class class class)co 7346  1c1 11004  cn 12122  Word cword 14417  ⟨“cs1 14500  Vtxcvtx 28972  Edgcedg 29023  ClWWalksNOncclwwlknon 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-lsw 14467  df-s1 14501  df-clwwlk 29957  df-clwwlkn 30000  df-clwwlknon 30063
This theorem is referenced by:  clwwlknon1sn  30075  clwwlknon1le1  30076
  Copyright terms: Public domain W3C validator