![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1nloop | Structured version Visualization version GIF version |
Description: If there is no loop at vertex π, the set of (closed) walks on π of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | β’ π = (VtxβπΊ) |
clwwlknon1.c | β’ πΆ = (ClWWalksNOnβπΊ) |
clwwlknon1.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
clwwlknon1nloop | β’ ({π} β πΈ β (ππΆ1) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon1.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | clwwlknon1.c | . . . . 5 β’ πΆ = (ClWWalksNOnβπΊ) | |
3 | clwwlknon1.e | . . . . 5 β’ πΈ = (EdgβπΊ) | |
4 | 1, 2, 3 | clwwlknon1 29819 | . . . 4 β’ (π β π β (ππΆ1) = {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)}) |
5 | 4 | adantr 480 | . . 3 β’ ((π β π β§ {π} β πΈ) β (ππΆ1) = {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)}) |
6 | df-nel 3039 | . . . . . . . . 9 β’ ({π} β πΈ β Β¬ {π} β πΈ) | |
7 | 6 | biimpi 215 | . . . . . . . 8 β’ ({π} β πΈ β Β¬ {π} β πΈ) |
8 | 7 | olcd 871 | . . . . . . 7 β’ ({π} β πΈ β (Β¬ π€ = β¨βπββ© β¨ Β¬ {π} β πΈ)) |
9 | 8 | ad2antlr 724 | . . . . . 6 β’ (((π β π β§ {π} β πΈ) β§ π€ β Word π) β (Β¬ π€ = β¨βπββ© β¨ Β¬ {π} β πΈ)) |
10 | ianor 978 | . . . . . 6 β’ (Β¬ (π€ = β¨βπββ© β§ {π} β πΈ) β (Β¬ π€ = β¨βπββ© β¨ Β¬ {π} β πΈ)) | |
11 | 9, 10 | sylibr 233 | . . . . 5 β’ (((π β π β§ {π} β πΈ) β§ π€ β Word π) β Β¬ (π€ = β¨βπββ© β§ {π} β πΈ)) |
12 | 11 | ralrimiva 3138 | . . . 4 β’ ((π β π β§ {π} β πΈ) β βπ€ β Word π Β¬ (π€ = β¨βπββ© β§ {π} β πΈ)) |
13 | rabeq0 4376 | . . . 4 β’ ({π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)} = β β βπ€ β Word π Β¬ (π€ = β¨βπββ© β§ {π} β πΈ)) | |
14 | 12, 13 | sylibr 233 | . . 3 β’ ((π β π β§ {π} β πΈ) β {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)} = β ) |
15 | 5, 14 | eqtrd 2764 | . 2 β’ ((π β π β§ {π} β πΈ) β (ππΆ1) = β ) |
16 | 2 | oveqi 7414 | . . . 4 β’ (ππΆ1) = (π(ClWWalksNOnβπΊ)1) |
17 | 1 | eleq2i 2817 | . . . . . . . 8 β’ (π β π β π β (VtxβπΊ)) |
18 | 17 | notbii 320 | . . . . . . 7 β’ (Β¬ π β π β Β¬ π β (VtxβπΊ)) |
19 | 18 | biimpi 215 | . . . . . 6 β’ (Β¬ π β π β Β¬ π β (VtxβπΊ)) |
20 | 19 | intnanrd 489 | . . . . 5 β’ (Β¬ π β π β Β¬ (π β (VtxβπΊ) β§ 1 β β)) |
21 | clwwlknon0 29815 | . . . . 5 β’ (Β¬ (π β (VtxβπΊ) β§ 1 β β) β (π(ClWWalksNOnβπΊ)1) = β ) | |
22 | 20, 21 | syl 17 | . . . 4 β’ (Β¬ π β π β (π(ClWWalksNOnβπΊ)1) = β ) |
23 | 16, 22 | eqtrid 2776 | . . 3 β’ (Β¬ π β π β (ππΆ1) = β ) |
24 | 23 | adantr 480 | . 2 β’ ((Β¬ π β π β§ {π} β πΈ) β (ππΆ1) = β ) |
25 | 15, 24 | pm2.61ian 809 | 1 β’ ({π} β πΈ β (ππΆ1) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β¨ wo 844 = wceq 1533 β wcel 2098 β wnel 3038 βwral 3053 {crab 3424 β c0 4314 {csn 4620 βcfv 6533 (class class class)co 7401 1c1 11107 βcn 12209 Word cword 14461 β¨βcs1 14542 Vtxcvtx 28725 Edgcedg 28776 ClWWalksNOncclwwlknon 29809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-lsw 14510 df-s1 14543 df-clwwlk 29704 df-clwwlkn 29747 df-clwwlknon 29810 |
This theorem is referenced by: clwwlknon1sn 29822 clwwlknon1le1 29823 |
Copyright terms: Public domain | W3C validator |