| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon1nloop | Structured version Visualization version GIF version | ||
| Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknon1nloop | ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknon1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | clwwlknon1.c | . . . . 5 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 3 | clwwlknon1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 2, 3 | clwwlknon1 30116 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
| 6 | df-nel 3047 | . . . . . . . . 9 ⊢ ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸) | |
| 7 | 6 | biimpi 216 | . . . . . . . 8 ⊢ ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸) |
| 8 | 7 | olcd 875 | . . . . . . 7 ⊢ ({𝑋} ∉ 𝐸 → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
| 9 | 8 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
| 10 | ianor 984 | . . . . . 6 ⊢ (¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) | |
| 11 | 9, 10 | sylibr 234 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
| 12 | 11 | ralrimiva 3146 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
| 13 | rabeq0 4388 | . . . 4 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅) |
| 15 | 5, 14 | eqtrd 2777 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
| 16 | 2 | oveqi 7444 | . . . 4 ⊢ (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1) |
| 17 | 1 | eleq2i 2833 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
| 18 | 17 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ 𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺)) |
| 19 | 18 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺)) |
| 20 | 19 | intnanrd 489 | . . . . 5 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
| 21 | clwwlknon0 30112 | . . . . 5 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
| 23 | 16, 22 | eqtrid 2789 | . . 3 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋𝐶1) = ∅) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((¬ 𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
| 25 | 15, 24 | pm2.61ian 812 | 1 ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∉ wnel 3046 ∀wral 3061 {crab 3436 ∅c0 4333 {csn 4626 ‘cfv 6561 (class class class)co 7431 1c1 11156 ℕcn 12266 Word cword 14552 〈“cs1 14633 Vtxcvtx 29013 Edgcedg 29064 ClWWalksNOncclwwlknon 30106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-lsw 14601 df-s1 14634 df-clwwlk 30001 df-clwwlkn 30044 df-clwwlknon 30107 |
| This theorem is referenced by: clwwlknon1sn 30119 clwwlknon1le1 30120 |
| Copyright terms: Public domain | W3C validator |