MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1nloop Structured version   Visualization version   GIF version

Theorem clwwlknon1nloop 30131
Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1nloop ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)

Proof of Theorem clwwlknon1nloop
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clwwlknon1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 clwwlknon1.c . . . . 5 𝐶 = (ClWWalksNOn‘𝐺)
3 clwwlknon1.e . . . . 5 𝐸 = (Edg‘𝐺)
41, 2, 3clwwlknon1 30129 . . . 4 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
54adantr 480 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
6 df-nel 3053 . . . . . . . . 9 ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸)
76biimpi 216 . . . . . . . 8 ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸)
87olcd 873 . . . . . . 7 ({𝑋} ∉ 𝐸 → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
98ad2antlr 726 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
10 ianor 982 . . . . . 6 (¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
119, 10sylibr 234 . . . . 5 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1211ralrimiva 3152 . . . 4 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
13 rabeq0 4411 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1412, 13sylibr 234 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅)
155, 14eqtrd 2780 . 2 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
162oveqi 7461 . . . 4 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
171eleq2i 2836 . . . . . . . 8 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
1817notbii 320 . . . . . . 7 𝑋𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺))
1918biimpi 216 . . . . . 6 𝑋𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺))
2019intnanrd 489 . . . . 5 𝑋𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ))
21 clwwlknon0 30125 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2220, 21syl 17 . . . 4 𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2316, 22eqtrid 2792 . . 3 𝑋𝑉 → (𝑋𝐶1) = ∅)
2423adantr 480 . 2 ((¬ 𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
2515, 24pm2.61ian 811 1 ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wnel 3052  wral 3067  {crab 3443  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  1c1 11185  cn 12293  Word cword 14562  ⟨“cs1 14643  Vtxcvtx 29031  Edgcedg 29082  ClWWalksNOncclwwlknon 30119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-s1 14644  df-clwwlk 30014  df-clwwlkn 30057  df-clwwlknon 30120
This theorem is referenced by:  clwwlknon1sn  30132  clwwlknon1le1  30133
  Copyright terms: Public domain W3C validator