| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon1nloop | Structured version Visualization version GIF version | ||
| Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknon1nloop | ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknon1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | clwwlknon1.c | . . . . 5 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 3 | clwwlknon1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 2, 3 | clwwlknon1 30026 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
| 6 | df-nel 3030 | . . . . . . . . 9 ⊢ ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸) | |
| 7 | 6 | biimpi 216 | . . . . . . . 8 ⊢ ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸) |
| 8 | 7 | olcd 874 | . . . . . . 7 ⊢ ({𝑋} ∉ 𝐸 → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
| 9 | 8 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) |
| 10 | ianor 983 | . . . . . 6 ⊢ (¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = 〈“𝑋”〉 ∨ ¬ {𝑋} ∈ 𝐸)) | |
| 11 | 9, 10 | sylibr 234 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
| 12 | 11 | ralrimiva 3125 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
| 13 | rabeq0 4351 | . . . 4 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = ∅) |
| 15 | 5, 14 | eqtrd 2764 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
| 16 | 2 | oveqi 7400 | . . . 4 ⊢ (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1) |
| 17 | 1 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
| 18 | 17 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ 𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺)) |
| 19 | 18 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺)) |
| 20 | 19 | intnanrd 489 | . . . . 5 ⊢ (¬ 𝑋 ∈ 𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
| 21 | clwwlknon0 30022 | . . . . 5 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
| 23 | 16, 22 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝑋𝐶1) = ∅) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((¬ 𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
| 25 | 15, 24 | pm2.61ian 811 | 1 ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 {crab 3405 ∅c0 4296 {csn 4589 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕcn 12186 Word cword 14478 〈“cs1 14560 Vtxcvtx 28923 Edgcedg 28974 ClWWalksNOncclwwlknon 30016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-lsw 14528 df-s1 14561 df-clwwlk 29911 df-clwwlkn 29954 df-clwwlknon 30017 |
| This theorem is referenced by: clwwlknon1sn 30029 clwwlknon1le1 30030 |
| Copyright terms: Public domain | W3C validator |