MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1nloop Structured version   Visualization version   GIF version

Theorem clwwlknon1nloop 30080
Description: If there is no loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1nloop ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)

Proof of Theorem clwwlknon1nloop
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clwwlknon1.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 clwwlknon1.c . . . . 5 𝐶 = (ClWWalksNOn‘𝐺)
3 clwwlknon1.e . . . . 5 𝐸 = (Edg‘𝐺)
41, 2, 3clwwlknon1 30078 . . . 4 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
54adantr 480 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
6 df-nel 3037 . . . . . . . . 9 ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸)
76biimpi 216 . . . . . . . 8 ({𝑋} ∉ 𝐸 → ¬ {𝑋} ∈ 𝐸)
87olcd 874 . . . . . . 7 ({𝑋} ∉ 𝐸 → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
98ad2antlr 727 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
10 ianor 983 . . . . . 6 (¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) ↔ (¬ 𝑤 = ⟨“𝑋”⟩ ∨ ¬ {𝑋} ∈ 𝐸))
119, 10sylibr 234 . . . . 5 (((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1211ralrimiva 3132 . . . 4 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
13 rabeq0 4363 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
1412, 13sylibr 234 . . 3 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = ∅)
155, 14eqtrd 2770 . 2 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
162oveqi 7418 . . . 4 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
171eleq2i 2826 . . . . . . . 8 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
1817notbii 320 . . . . . . 7 𝑋𝑉 ↔ ¬ 𝑋 ∈ (Vtx‘𝐺))
1918biimpi 216 . . . . . 6 𝑋𝑉 → ¬ 𝑋 ∈ (Vtx‘𝐺))
2019intnanrd 489 . . . . 5 𝑋𝑉 → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ))
21 clwwlknon0 30074 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2220, 21syl 17 . . . 4 𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2316, 22eqtrid 2782 . . 3 𝑋𝑉 → (𝑋𝐶1) = ∅)
2423adantr 480 . 2 ((¬ 𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
2515, 24pm2.61ian 811 1 ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wnel 3036  wral 3051  {crab 3415  c0 4308  {csn 4601  cfv 6531  (class class class)co 7405  1c1 11130  cn 12240  Word cword 14531  ⟨“cs1 14613  Vtxcvtx 28975  Edgcedg 29026  ClWWalksNOncclwwlknon 30068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-s1 14614  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069
This theorem is referenced by:  clwwlknon1sn  30081  clwwlknon1le1  30082
  Copyright terms: Public domain W3C validator