| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimdetndef | Structured version Visualization version GIF version | ||
| Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| nfimdetndef.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| Ref | Expression |
|---|---|
| nfimdetndef | ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimdetndef.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 2 | eqid 2733 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
| 4 | eqid 2733 | . . 3 ⊢ (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) | |
| 5 | eqid 2733 | . . 3 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
| 6 | eqid 2733 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 7 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | eqid 2733 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetfval 22511 | . 2 ⊢ 𝐷 = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
| 10 | df-nel 3035 | . . . . . . 7 ⊢ (𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin) | |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ (𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin) |
| 12 | 11 | intnanrd 489 | . . . . 5 ⊢ (𝑁 ∉ Fin → ¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 13 | matbas0 22335 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∉ Fin → (Base‘(𝑁 Mat 𝑅)) = ∅) |
| 15 | 14 | mpteq1d 5185 | . . 3 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
| 16 | mpt0 6631 | . . 3 ⊢ (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅ | |
| 17 | 15, 16 | eqtrdi 2784 | . 2 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅) |
| 18 | 9, 17 | eqtrid 2780 | 1 ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∉ wnel 3034 Vcvv 3438 ∅c0 4284 ↦ cmpt 5176 ∘ ccom 5625 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 Basecbs 17130 .rcmulr 17172 Σg cgsu 17354 SymGrpcsymg 19291 pmSgncpsgn 19411 mulGrpcmgp 20068 ℤRHomczrh 21446 Mat cmat 22332 maDet cmdat 22509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-1cn 11074 ax-addcl 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12136 df-slot 17103 df-ndx 17115 df-base 17131 df-mat 22333 df-mdet 22510 |
| This theorem is referenced by: mdetfval1 22515 |
| Copyright terms: Public domain | W3C validator |