![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfimdetndef | Structured version Visualization version GIF version |
Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.) |
Ref | Expression |
---|---|
nfimdetndef.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
Ref | Expression |
---|---|
nfimdetndef | ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfimdetndef.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | eqid 2725 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2725 | . . 3 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | eqid 2725 | . . 3 ⊢ (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) | |
5 | eqid 2725 | . . 3 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
6 | eqid 2725 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
7 | eqid 2725 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | eqid 2725 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetfval 22504 | . 2 ⊢ 𝐷 = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
10 | df-nel 3037 | . . . . . . 7 ⊢ (𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin) | |
11 | 10 | biimpi 215 | . . . . . 6 ⊢ (𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin) |
12 | 11 | intnanrd 488 | . . . . 5 ⊢ (𝑁 ∉ Fin → ¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
13 | matbas0 22326 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∉ Fin → (Base‘(𝑁 Mat 𝑅)) = ∅) |
15 | 14 | mpteq1d 5238 | . . 3 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
16 | mpt0 6691 | . . 3 ⊢ (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅ | |
17 | 15, 16 | eqtrdi 2781 | . 2 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅) |
18 | 9, 17 | eqtrid 2777 | 1 ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∉ wnel 3036 Vcvv 3463 ∅c0 4318 ↦ cmpt 5226 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7415 Fincfn 8960 Basecbs 17177 .rcmulr 17231 Σg cgsu 17419 SymGrpcsymg 19323 pmSgncpsgn 19446 mulGrpcmgp 20076 ℤRHomczrh 21427 Mat cmat 22323 maDet cmdat 22502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-nn 12241 df-slot 17148 df-ndx 17160 df-base 17178 df-mat 22324 df-mdet 22503 |
This theorem is referenced by: mdetfval1 22508 |
Copyright terms: Public domain | W3C validator |