MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzpreddisj Structured version   Visualization version   GIF version

Theorem fzpreddisj 13510
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 4168 . 2 ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = (((𝑀 + 1)...𝑁) ∩ {𝑀})
2 0lt1 11676 . . . . . . . 8 0 < 1
3 0re 11152 . . . . . . . . 9 0 ∈ ℝ
4 1re 11150 . . . . . . . . 9 1 ∈ ℝ
53, 4ltnlei 11271 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
62, 5mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
7 eluzel2 12774 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
87zred 12614 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
9 leaddle0 11669 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
108, 4, 9sylancl 586 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
116, 10mtbiri 327 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑀 + 1) ≤ 𝑀)
1211intnanrd 489 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀𝑀𝑁))
1312intnand 488 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
14 elfz2 13451 . . . 4 (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
1513, 14sylnibr 329 . . 3 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
16 disjsn 4671 . . 3 ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
1715, 16sylibr 234 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅)
181, 17eqtrid 2776 1 (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3910  c0 4292  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  gsummptfzsplitl  19839  cyclnumvtx  29703  chtvalz  34593
  Copyright terms: Public domain W3C validator