MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzpreddisj Structured version   Visualization version   GIF version

Theorem fzpreddisj 13613
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 4209 . 2 ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = (((𝑀 + 1)...𝑁) ∩ {𝑀})
2 0lt1 11785 . . . . . . . 8 0 < 1
3 0re 11263 . . . . . . . . 9 0 ∈ ℝ
4 1re 11261 . . . . . . . . 9 1 ∈ ℝ
53, 4ltnlei 11382 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
62, 5mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
7 eluzel2 12883 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
87zred 12722 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
9 leaddle0 11778 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
108, 4, 9sylancl 586 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
116, 10mtbiri 327 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑀 + 1) ≤ 𝑀)
1211intnanrd 489 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀𝑀𝑁))
1312intnand 488 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
14 elfz2 13554 . . . 4 (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
1513, 14sylnibr 329 . . 3 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
16 disjsn 4711 . . 3 ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
1715, 16sylibr 234 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅)
181, 17eqtrid 2789 1 (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cin 3950  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  gsummptfzsplitl  19951  cyclnumvtx  29820  chtvalz  34644
  Copyright terms: Public domain W3C validator