![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzpreddisj | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
fzpreddisj | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4195 | . 2 ⊢ ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = (((𝑀 + 1)...𝑁) ∩ {𝑀}) | |
2 | 0lt1 11764 | . . . . . . . 8 ⊢ 0 < 1 | |
3 | 0re 11244 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
4 | 1re 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
5 | 3, 4 | ltnlei 11363 | . . . . . . . 8 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
6 | 2, 5 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 ≤ 0 |
7 | eluzel2 12855 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
8 | 7 | zred 12694 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
9 | leaddle0 11757 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) | |
10 | 8, 4, 9 | sylancl 584 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) |
11 | 6, 10 | mtbiri 326 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑀 + 1) ≤ 𝑀) |
12 | 11 | intnanrd 488 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
13 | 12 | intnand 487 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
14 | elfz2 13521 | . . . 4 ⊢ (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | |
15 | 13, 14 | sylnibr 328 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) |
16 | disjsn 4711 | . . 3 ⊢ ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) | |
17 | 15, 16 | sylibr 233 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅) |
18 | 1, 17 | eqtrid 2777 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ∅c0 4318 {csn 4624 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 ℝcr 11135 0cc0 11136 1c1 11137 + caddc 11139 < clt 11276 ≤ cle 11277 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-z 12587 df-uz 12851 df-fz 13515 |
This theorem is referenced by: gsummptfzsplitl 19890 chtvalz 34317 |
Copyright terms: Public domain | W3C validator |