Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divgcdoddALTV Structured version   Visualization version   GIF version

Theorem divgcdoddALTV 46648
Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
divgcdoddALTV ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))

Proof of Theorem divgcdoddALTV
StepHypRef Expression
1 divgcdodd 16651 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
2 nnz 12583 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 nnz 12583 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 gcddvds 16448 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
52, 3, 4syl2an 594 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
65simpld 493 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72, 3anim12i 611 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 nnne0 12250 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98neneqd 2943 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ¬ 𝐴 = 0)
109intnanrd 488 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1110adantr 479 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16447 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
137, 11, 12syl2anc 582 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12589 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
1513nnne0d 12266 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
162adantr 479 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
17 dvdsval2 16204 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
1814, 15, 16, 17syl3anc 1369 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
196, 18mpbid 231 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
2019biantrurd 531 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))))
215simprd 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
223adantl 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
23 dvdsval2 16204 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2414, 15, 22, 23syl3anc 1369 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2521, 24mpbid 231 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
2625biantrurd 531 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
2720, 26orbi12d 915 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))))
281, 27mpbid 231 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
29 isodd3 46618 . . 3 ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))))
30 isodd3 46618 . . 3 ((𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
3129, 30orbi12i 911 . 2 (((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3228, 31sylibr 233 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wne 2938   class class class wbr 5147  (class class class)co 7411  0cc0 11112   / cdiv 11875  cn 12216  2c2 12271  cz 12562  cdvds 16201   gcd cgcd 16439   Odd codd 46591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-dvds 16202  df-gcd 16440  df-odd 46593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator