Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divgcdoddALTV Structured version   Visualization version   GIF version

Theorem divgcdoddALTV 47687
Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
divgcdoddALTV ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))

Proof of Theorem divgcdoddALTV
StepHypRef Expression
1 divgcdodd 16687 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
2 nnz 12557 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 nnz 12557 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 gcddvds 16480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
52, 3, 4syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
65simpld 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72, 3anim12i 613 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 nnne0 12227 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98neneqd 2931 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ¬ 𝐴 = 0)
109intnanrd 489 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1110adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16479 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
137, 11, 12syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12563 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
1513nnne0d 12243 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
162adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
17 dvdsval2 16232 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
1814, 15, 16, 17syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
196, 18mpbid 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
2019biantrurd 532 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))))
215simprd 495 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
223adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
23 dvdsval2 16232 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2414, 15, 22, 23syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2521, 24mpbid 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
2625biantrurd 532 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
2720, 26orbi12d 918 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))))
281, 27mpbid 232 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
29 isodd3 47657 . . 3 ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))))
30 isodd3 47657 . . 3 ((𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
3129, 30orbi12i 914 . 2 (((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3228, 31sylibr 234 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  0cc0 11075   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cdvds 16229   gcd cgcd 16471   Odd codd 47630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-odd 47632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator