Proof of Theorem divgcdoddALTV
Step | Hyp | Ref
| Expression |
1 | | divgcdodd 16415 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |
2 | | nnz 12342 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
3 | | nnz 12342 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
4 | | gcddvds 16210 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
5 | 2, 3, 4 | syl2an 596 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
6 | 5 | simpld 495 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
7 | 2, 3 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ)) |
8 | | nnne0 12007 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
9 | 8 | neneqd 2948 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → ¬
𝐴 = 0) |
10 | 9 | intnanrd 490 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ¬
(𝐴 = 0 ∧ 𝐵 = 0)) |
11 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬
(𝐴 = 0 ∧ 𝐵 = 0)) |
12 | | gcdn0cl 16209 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) |
13 | 7, 11, 12 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
14 | 13 | nnzd 12425 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ) |
15 | 13 | nnne0d 12023 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0) |
16 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
17 | | dvdsval2 15966 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
18 | 14, 15, 16, 17 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
19 | 6, 18 | mpbid 231 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) |
20 | 19 | biantrurd 533 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2
∥ (𝐴 / (𝐴 gcd 𝐵)) ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))))) |
21 | 5 | simprd 496 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
22 | 3 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℤ) |
23 | | dvdsval2 15966 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
24 | 14, 15, 22, 23 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
25 | 21, 24 | mpbid 231 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) |
26 | 25 | biantrurd 533 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2
∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐵 / (𝐴 gcd 𝐵))))) |
27 | 20, 26 | orbi12d 916 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((¬
2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐵 / (𝐴 gcd 𝐵)))))) |
28 | 1, 27 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐵 / (𝐴 gcd 𝐵))))) |
29 | | isodd3 45104 |
. . 3
⊢ ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐴 / (𝐴 gcd 𝐵)))) |
30 | | isodd3 45104 |
. . 3
⊢ ((𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐵 / (𝐴 gcd 𝐵)))) |
31 | 29, 30 | orbi12i 912 |
. 2
⊢ (((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(𝐵 / (𝐴 gcd 𝐵))))) |
32 | 28, 31 | sylibr 233 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) |