Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divgcdoddALTV Structured version   Visualization version   GIF version

Theorem divgcdoddALTV 47607
Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
divgcdoddALTV ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))

Proof of Theorem divgcdoddALTV
StepHypRef Expression
1 divgcdodd 16744 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
2 nnz 12632 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 nnz 12632 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 gcddvds 16537 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
52, 3, 4syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
65simpld 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72, 3anim12i 613 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 nnne0 12298 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98neneqd 2943 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ¬ 𝐴 = 0)
109intnanrd 489 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1110adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16536 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
137, 11, 12syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12638 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
1513nnne0d 12314 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
162adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
17 dvdsval2 16290 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
1814, 15, 16, 17syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
196, 18mpbid 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
2019biantrurd 532 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))))
215simprd 495 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
223adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
23 dvdsval2 16290 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2414, 15, 22, 23syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2521, 24mpbid 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
2625biantrurd 532 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
2720, 26orbi12d 918 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))))
281, 27mpbid 232 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
29 isodd3 47577 . . 3 ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))))
30 isodd3 47577 . . 3 ((𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
3129, 30orbi12i 914 . 2 (((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3228, 31sylibr 234 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  0cc0 11153   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cdvds 16287   gcd cgcd 16528   Odd codd 47550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-odd 47552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator