MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgcd Structured version   Visualization version   GIF version

Theorem sqgcd 16581
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 16526 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
21nnsqcld 14262 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℕ)
32nncnd 12256 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℂ)
43mulridd 11252 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀 gcd 𝑁)↑2))
5 nnsqcl 14146 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ)
65nnzd 12615 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℤ)
76adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀↑2) ∈ ℤ)
8 nnsqcl 14146 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ)
98nnzd 12615 . . . . . 6 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℤ)
109adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁↑2) ∈ ℤ)
11 nnz 12609 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
12 nnz 12609 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 gcddvds 16522 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1411, 12, 13syl2an 596 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1514simpld 494 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑀)
161nnzd 12615 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℤ)
1711adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
18 dvdssqim 16573 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
1916, 17, 18syl2anc 584 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
2015, 19mpd 15 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2))
2114simprd 495 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑁)
2212adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
23 dvdssqim 16573 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2416, 22, 23syl2anc 584 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2521, 24mpd 15 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))
26 gcddiv 16570 . . . . 5 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ ∧ ((𝑀 gcd 𝑁)↑2) ∈ ℕ) ∧ (((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2) ∧ ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
277, 10, 2, 20, 25, 26syl32anc 1380 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
28 nncn 12248 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
2928adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
301nncnd 12256 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℂ)
311nnne0d 12290 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ≠ 0)
3229, 30, 31sqdivd 14177 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁))↑2) = ((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)))
33 nncn 12248 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3433adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3534, 30, 31sqdivd 14177 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 / (𝑀 gcd 𝑁))↑2) = ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2)))
3632, 35oveq12d 7423 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
37 gcddiv 16570 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℕ) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3817, 22, 1, 14, 37syl31anc 1375 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3930, 31dividd 12015 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = 1)
4038, 39eqtr3d 2772 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1)
41 dvdsval2 16275 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4216, 31, 17, 41syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4315, 42mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ)
44 nnre 12247 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
4544adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
461nnred 12255 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ)
47 nngt0 12271 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
4847adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑀)
491nngt0d 12289 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 gcd 𝑁))
5045, 46, 48, 49divgt0d 12177 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 / (𝑀 gcd 𝑁)))
51 elnnz 12598 . . . . . . 7 ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑀 / (𝑀 gcd 𝑁))))
5243, 50, 51sylanbrc 583 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ)
53 dvdsval2 16275 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5416, 31, 22, 53syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5521, 54mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ)
56 nnre 12247 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5756adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
58 nngt0 12271 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
5958adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
6057, 46, 59, 49divgt0d 12177 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑁 / (𝑀 gcd 𝑁)))
61 elnnz 12598 . . . . . . 7 ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑁 / (𝑀 gcd 𝑁))))
6255, 60, 61sylanbrc 583 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ)
63 2nn 12313 . . . . . . 7 2 ∈ ℕ
64 rppwr 16579 . . . . . . 7 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6563, 64mp3an3 1452 . . . . . 6 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6652, 62, 65syl2anc 584 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6740, 66mpd 15 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1)
6827, 36, 673eqtr2d 2776 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1)
696, 9anim12i 613 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ))
705nnne0d 12290 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀↑2) ≠ 0)
7170neneqd 2937 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ (𝑀↑2) = 0)
7271intnanrd 489 . . . . . . 7 (𝑀 ∈ ℕ → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
7372adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
74 gcdn0cl 16521 . . . . . 6 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) ∧ ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0)) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7569, 73, 74syl2anc 584 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7675nncnd 12256 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ)
772nnne0d 12290 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ≠ 0)
78 ax-1cn 11187 . . . . 5 1 ∈ ℂ
79 divmul 11899 . . . . 5 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) ≠ 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8078, 79mp3an2 1451 . . . 4 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) ≠ 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8176, 3, 77, 80syl12anc 836 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8268, 81mpbid 232 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2)))
834, 82eqtr3d 2772 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269   / cdiv 11894  cn 12240  2c2 12295  cz 12588  cexp 14079  cdvds 16272   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by:  dvdssqlem  16585  nn0gcdsq  16771  pythagtriplem3  16838
  Copyright terms: Public domain W3C validator