| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | limciccioolb.4 | . 2
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) | 
| 2 |  | ioossicc 13474 | . . 3
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | 
| 3 | 2 | a1i 11 | . 2
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) | 
| 4 |  | limciccioolb.1 | . . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 |  | limciccioolb.2 | . . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 6 | 4, 5 | iccssred 13475 | . . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | 
| 7 |  | ax-resscn 11213 | . . 3
⊢ ℝ
⊆ ℂ | 
| 8 | 6, 7 | sstrdi 3995 | . 2
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) | 
| 9 |  | eqid 2736 | . 2
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 10 |  | eqid 2736 | . 2
⊢
((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐴})) | 
| 11 |  | retop 24783 | . . . . . . . . 9
⊢
(topGen‘ran (,)) ∈ Top | 
| 12 | 11 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → (topGen‘ran (,))
∈ Top) | 
| 13 | 5 | rexrd 11312 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 14 |  | icossre 13469 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴[,)𝐵) ⊆
ℝ) | 
| 15 | 4, 13, 14 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ ℝ) | 
| 16 |  | difssd 4136 | . . . . . . . . . 10
⊢ (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ) | 
| 17 | 15, 16 | unssd 4191 | . . . . . . . . 9
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ) | 
| 18 |  | uniretop 24784 | . . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) | 
| 19 | 17, 18 | sseqtrdi 4023 | . . . . . . . 8
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,))) | 
| 20 |  | elioore 13418 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ) | 
| 21 | 20 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ) | 
| 22 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑥) | 
| 23 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵)) | 
| 24 |  | mnfxr 11319 | . . . . . . . . . . . . . . . . . . 19
⊢ -∞
∈ ℝ* | 
| 25 | 24 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈
ℝ*) | 
| 26 | 13 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈
ℝ*) | 
| 27 |  | elioo2 13429 | . . . . . . . . . . . . . . . . . 18
⊢
((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 29 | 23, 28 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 30 | 29 | simp3d 1144 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 < 𝐵) | 
| 32 | 4 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐴 ∈ ℝ) | 
| 33 | 13 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐵 ∈
ℝ*) | 
| 34 |  | elico2 13452 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 35 | 32, 33, 34 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | 
| 36 | 21, 22, 31, 35 | mpbir3and 1342 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 ∈ (𝐴[,)𝐵)) | 
| 37 | 36 | orcd 873 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 38 | 20 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ) | 
| 39 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ 𝐴 ≤ 𝑥) | 
| 40 | 39 | intnanrd 489 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | 
| 41 | 4 | rexrd 11312 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈
ℝ*) | 
| 42 | 41 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝐴 ∈
ℝ*) | 
| 43 | 13 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝐵 ∈
ℝ*) | 
| 44 | 38 | rexrd 11312 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ*) | 
| 45 |  | elicc4 13455 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | 
| 46 | 42, 43, 44, 45 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | 
| 47 | 40, 46 | mtbird 325 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) | 
| 48 | 38, 47 | eldifd 3961 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) | 
| 49 | 48 | olcd 874 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 50 | 37, 49 | pm2.61dan 812 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 51 |  | elun 4152 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 52 | 50, 51 | sylibr 234 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 53 | 52 | ralrimiva 3145 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 54 |  | dfss3 3971 | . . . . . . . . 9
⊢
((-∞(,)𝐵)
⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 55 | 53, 54 | sylibr 234 | . . . . . . . 8
⊢ (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) | 
| 56 |  | eqid 2736 | . . . . . . . . 9
⊢ ∪ (topGen‘ran (,)) = ∪
(topGen‘ran (,)) | 
| 57 | 56 | ntrss 23064 | . . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran
(,)))‘(-∞(,)𝐵))
⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) | 
| 58 | 12, 19, 55, 57 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) | 
| 59 | 24 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → -∞ ∈
ℝ*) | 
| 60 | 4 | mnfltd 13167 | . . . . . . . . 9
⊢ (𝜑 → -∞ < 𝐴) | 
| 61 |  | limciccioolb.3 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) | 
| 62 | 59, 13, 4, 60, 61 | eliood 45516 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (-∞(,)𝐵)) | 
| 63 |  | iooretop 24787 | . . . . . . . . . 10
⊢
(-∞(,)𝐵)
∈ (topGen‘ran (,)) | 
| 64 | 63 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran
(,))) | 
| 65 |  | isopn3i 23091 | . . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵)) | 
| 66 | 12, 64, 65 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵)) | 
| 67 | 62, 66 | eleqtrrd 2843 | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ((int‘(topGen‘ran
(,)))‘(-∞(,)𝐵))) | 
| 68 | 58, 67 | sseldd 3983 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) | 
| 69 | 4 | leidd 11830 | . . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐴) | 
| 70 | 4, 5, 61 | ltled 11410 | . . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| 71 | 4, 5, 4, 69, 70 | eliccd 45522 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) | 
| 72 | 68, 71 | elind 4199 | . . . . 5
⊢ (𝜑 → 𝐴 ∈ (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) | 
| 73 |  | icossicc 13477 | . . . . . . 7
⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) | 
| 74 | 73 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) | 
| 75 |  | eqid 2736 | . . . . . . 7
⊢
((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) | 
| 76 | 18, 75 | restntr 23191 | . . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran
(,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) | 
| 77 | 12, 6, 74, 76 | syl3anc 1372 | . . . . 5
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) | 
| 78 | 72, 77 | eleqtrrd 2843 | . . . 4
⊢ (𝜑 → 𝐴 ∈ ((int‘((topGen‘ran (,))
↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) | 
| 79 |  | eqid 2736 | . . . . . . . . 9
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) | 
| 80 | 9, 79 | rerest 24826 | . . . . . . . 8
⊢ ((𝐴[,]𝐵) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) | 
| 81 | 6, 80 | syl 17 | . . . . . . 7
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) | 
| 82 | 81 | eqcomd 2742 | . . . . . 6
⊢ (𝜑 → ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,]𝐵))) | 
| 83 | 82 | fveq2d 6909 | . . . . 5
⊢ (𝜑 →
(int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))) | 
| 84 | 83 | fveq1d 6907 | . . . 4
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) | 
| 85 | 78, 84 | eleqtrd 2842 | . . 3
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) | 
| 86 | 71 | snssd 4808 | . . . . . . . 8
⊢ (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵)) | 
| 87 |  | ssequn2 4188 | . . . . . . . 8
⊢ ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵)) | 
| 88 | 86, 87 | sylib 218 | . . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵)) | 
| 89 | 88 | eqcomd 2742 | . . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴})) | 
| 90 | 89 | oveq2d 7448 | . . . . 5
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐴}))) | 
| 91 | 90 | fveq2d 6909 | . . . 4
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))) | 
| 92 |  | uncom 4157 | . . . . 5
⊢ ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵)) | 
| 93 |  | snunioo 13519 | . . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) | 
| 94 | 41, 13, 61, 93 | syl3anc 1372 | . . . . 5
⊢ (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) | 
| 95 | 92, 94 | eqtr2id 2789 | . . . 4
⊢ (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴})) | 
| 96 | 91, 95 | fveq12d 6912 | . . 3
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) | 
| 97 | 85, 96 | eleqtrd 2842 | . 2
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) | 
| 98 | 1, 3, 8, 9, 10, 97 | limcres 25922 | 1
⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) |