Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   GIF version

Theorem limciccioolb 40515
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1 (𝜑𝐴 ∈ ℝ)
limciccioolb.2 (𝜑𝐵 ∈ ℝ)
limciccioolb.3 (𝜑𝐴 < 𝐵)
limciccioolb.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limciccioolb (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))

Proof of Theorem limciccioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 12466 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limciccioolb.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limciccioolb.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 40393 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 10250 . . 3 ℝ ⊆ ℂ
86, 7syl6ss 3775 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2765 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2765 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))
11 retop 22858 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
135rexrd 10347 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
14 icossre 12461 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
154, 13, 14syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
16 difssd 3902 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 3953 . . . . . . . . 9 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 22859 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18syl6sseq 3813 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 12412 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ)
2120ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ ℝ)
22 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴𝑥)
23 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵))
24 mnfxr 10354 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈ ℝ*)
2613adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ*)
27 elioo2 12423 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2825, 26, 27syl2anc 579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2923, 28mpbid 223 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵))
3029simp3d 1174 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵)
3130adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 < 𝐵)
324ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴 ∈ ℝ)
3313ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐵 ∈ ℝ*)
34 elico2 12444 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3532, 33, 34syl2anc 579 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3621, 22, 31, 35mpbir3and 1442 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ (𝐴[,)𝐵))
3736orcd 899 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3820ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ)
39 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝐴𝑥)
4039intnanrd 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ (𝐴𝑥𝑥𝐵))
414rexrd 10347 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
4241ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
4313ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐵 ∈ ℝ*)
4438rexrd 10347 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
45 elicc4 12447 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4642, 43, 44, 45syl3anc 1490 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4740, 46mtbird 316 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4838, 47eldifd 3745 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4948olcd 900 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5037, 49pm2.61dan 847 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
51 elun 3917 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 225 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5352ralrimiva 3113 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
54 dfss3 3752 . . . . . . . . 9 ((-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5553, 54sylibr 225 . . . . . . . 8 (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
56 eqid 2765 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5756ntrss 21153 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5812, 19, 55, 57syl3anc 1490 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5924a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
604mnfltd 12163 . . . . . . . . 9 (𝜑 → -∞ < 𝐴)
61 limciccioolb.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
6259, 13, 4, 60, 61eliood 40386 . . . . . . . 8 (𝜑𝐴 ∈ (-∞(,)𝐵))
63 iooretop 22862 . . . . . . . . . 10 (-∞(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
65 isopn3i 21180 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6612, 64, 65syl2anc 579 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6762, 66eleqtrrd 2847 . . . . . . 7 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)))
6858, 67sseldd 3764 . . . . . 6 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
694leidd 10852 . . . . . . 7 (𝜑𝐴𝐴)
704, 5, 61ltled 10443 . . . . . . 7 (𝜑𝐴𝐵)
714, 5, 4, 69, 70eliccd 40392 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
7268, 71elind 3962 . . . . 5 (𝜑𝐴 ∈ (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
73 icossicc 12468 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
7473a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
75 eqid 2765 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7618, 75restntr 21280 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7712, 6, 74, 76syl3anc 1490 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7872, 77eleqtrrd 2847 . . . 4 (𝜑𝐴 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
79 eqid 2765 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
809, 79rerest 22900 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
816, 80syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
8281eqcomd 2771 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8382fveq2d 6383 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8483fveq1d 6381 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8578, 84eleqtrd 2846 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8671snssd 4496 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵))
87 ssequn2 3950 . . . . . . . 8 ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8886, 87sylib 209 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8988eqcomd 2771 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴}))
9089oveq2d 6862 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))
9190fveq2d 6383 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))))
92 uncom 3921 . . . . 5 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
93 snunioo 12510 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9441, 13, 61, 93syl3anc 1490 . . . . 5 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9592, 94syl5req 2812 . . . 4 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
9691, 95fveq12d 6386 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
9785, 96eleqtrd 2846 . 2 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
981, 3, 8, 9, 10, 97limcres 23955 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wral 3055  cdif 3731  cun 3732  cin 3733  wss 3734  {csn 4336   cuni 4596   class class class wbr 4811  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  -∞cmnf 10330  *cxr 10331   < clt 10332  cle 10333  (,)cioo 12382  [,)cico 12384  [,]cicc 12385  t crest 16361  TopOpenctopn 16362  topGenctg 16378  fldccnfld 20033  Topctop 20991  intcnt 21115   lim climc 23931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fi 8528  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ico 12388  df-icc 12389  df-fz 12539  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-plusg 16241  df-mulr 16242  df-starv 16243  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-rest 16363  df-topn 16364  df-topgen 16384  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-cnp 21326  df-xms 22418  df-ms 22419  df-limc 23935
This theorem is referenced by:  cncfiooicclem1  40768  fourierdlem82  41066  fourierdlem93  41077  fourierdlem111  41095
  Copyright terms: Public domain W3C validator