Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   GIF version

Theorem limciccioolb 43852
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1 (𝜑𝐴 ∈ ℝ)
limciccioolb.2 (𝜑𝐵 ∈ ℝ)
limciccioolb.3 (𝜑𝐴 < 𝐵)
limciccioolb.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limciccioolb (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))

Proof of Theorem limciccioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13350 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limciccioolb.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limciccioolb.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13351 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11108 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3956 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2736 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2736 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))
11 retop 24125 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
135rexrd 11205 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
14 icossre 13345 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
154, 13, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
16 difssd 4092 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4146 . . . . . . . . 9 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24126 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 3994 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13294 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ)
2120ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ ℝ)
22 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴𝑥)
23 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵))
24 mnfxr 11212 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈ ℝ*)
2613adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ*)
27 elioo2 13305 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2825, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2923, 28mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵))
3029simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵)
3130adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 < 𝐵)
324ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴 ∈ ℝ)
3313ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐵 ∈ ℝ*)
34 elico2 13328 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3532, 33, 34syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3621, 22, 31, 35mpbir3and 1342 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ (𝐴[,)𝐵))
3736orcd 871 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3820ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ)
39 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝐴𝑥)
4039intnanrd 490 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ (𝐴𝑥𝑥𝐵))
414rexrd 11205 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
4241ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
4313ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐵 ∈ ℝ*)
4438rexrd 11205 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
45 elicc4 13331 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4642, 43, 44, 45syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4740, 46mtbird 324 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4838, 47eldifd 3921 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4948olcd 872 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5037, 49pm2.61dan 811 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
51 elun 4108 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 233 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5352ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
54 dfss3 3932 . . . . . . . . 9 ((-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5553, 54sylibr 233 . . . . . . . 8 (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
56 eqid 2736 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5756ntrss 22406 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5812, 19, 55, 57syl3anc 1371 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5924a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
604mnfltd 13045 . . . . . . . . 9 (𝜑 → -∞ < 𝐴)
61 limciccioolb.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
6259, 13, 4, 60, 61eliood 43726 . . . . . . . 8 (𝜑𝐴 ∈ (-∞(,)𝐵))
63 iooretop 24129 . . . . . . . . . 10 (-∞(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
65 isopn3i 22433 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6612, 64, 65syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6762, 66eleqtrrd 2841 . . . . . . 7 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)))
6858, 67sseldd 3945 . . . . . 6 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
694leidd 11721 . . . . . . 7 (𝜑𝐴𝐴)
704, 5, 61ltled 11303 . . . . . . 7 (𝜑𝐴𝐵)
714, 5, 4, 69, 70eliccd 43732 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
7268, 71elind 4154 . . . . 5 (𝜑𝐴 ∈ (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
73 icossicc 13353 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
7473a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
75 eqid 2736 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7618, 75restntr 22533 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7712, 6, 74, 76syl3anc 1371 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7872, 77eleqtrrd 2841 . . . 4 (𝜑𝐴 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
79 eqid 2736 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
809, 79rerest 24167 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
816, 80syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
8281eqcomd 2742 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8382fveq2d 6846 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8483fveq1d 6844 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8578, 84eleqtrd 2840 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8671snssd 4769 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵))
87 ssequn2 4143 . . . . . . . 8 ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8886, 87sylib 217 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8988eqcomd 2742 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴}))
9089oveq2d 7373 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))
9190fveq2d 6846 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))))
92 uncom 4113 . . . . 5 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
93 snunioo 13395 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9441, 13, 61, 93syl3anc 1371 . . . . 5 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9592, 94eqtr2id 2789 . . . 4 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
9691, 95fveq12d 6849 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
9785, 96eleqtrd 2840 . 2 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
981, 3, 8, 9, 10, 97limcres 25250 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cdif 3907  cun 3908  cin 3909  wss 3910  {csn 4586   cuni 4865   class class class wbr 5105  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  intcnt 22368   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230
This theorem is referenced by:  cncfiooicclem1  44124  fourierdlem82  44419  fourierdlem93  44430  fourierdlem111  44448
  Copyright terms: Public domain W3C validator