Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   GIF version

Theorem limciccioolb 41465
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1 (𝜑𝐴 ∈ ℝ)
limciccioolb.2 (𝜑𝐵 ∈ ℝ)
limciccioolb.3 (𝜑𝐴 < 𝐵)
limciccioolb.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limciccioolb (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))

Proof of Theorem limciccioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 12676 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limciccioolb.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limciccioolb.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 41343 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 10447 . . 3 ℝ ⊆ ℂ
86, 7syl6ss 3907 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2797 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2797 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))
11 retop 23057 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
135rexrd 10544 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
14 icossre 12671 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
154, 13, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
16 difssd 4036 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4089 . . . . . . . . 9 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 23058 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18syl6sseq 3944 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 12622 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ)
2120ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ ℝ)
22 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴𝑥)
23 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵))
24 mnfxr 10551 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈ ℝ*)
2613adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ*)
27 elioo2 12633 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2825, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2923, 28mpbid 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵))
3029simp3d 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵)
3130adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 < 𝐵)
324ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴 ∈ ℝ)
3313ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐵 ∈ ℝ*)
34 elico2 12654 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3532, 33, 34syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3621, 22, 31, 35mpbir3and 1335 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ (𝐴[,)𝐵))
3736orcd 870 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3820ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ)
39 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝐴𝑥)
4039intnanrd 490 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ (𝐴𝑥𝑥𝐵))
414rexrd 10544 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
4241ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
4313ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐵 ∈ ℝ*)
4438rexrd 10544 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
45 elicc4 12657 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4642, 43, 44, 45syl3anc 1364 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4740, 46mtbird 326 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4838, 47eldifd 3876 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4948olcd 871 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5037, 49pm2.61dan 809 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
51 elun 4052 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 235 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5352ralrimiva 3151 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
54 dfss3 3884 . . . . . . . . 9 ((-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5553, 54sylibr 235 . . . . . . . 8 (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
56 eqid 2797 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5756ntrss 21351 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5812, 19, 55, 57syl3anc 1364 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5924a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
604mnfltd 12373 . . . . . . . . 9 (𝜑 → -∞ < 𝐴)
61 limciccioolb.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
6259, 13, 4, 60, 61eliood 41336 . . . . . . . 8 (𝜑𝐴 ∈ (-∞(,)𝐵))
63 iooretop 23061 . . . . . . . . . 10 (-∞(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
65 isopn3i 21378 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6612, 64, 65syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6762, 66eleqtrrd 2888 . . . . . . 7 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)))
6858, 67sseldd 3896 . . . . . 6 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
694leidd 11060 . . . . . . 7 (𝜑𝐴𝐴)
704, 5, 61ltled 10641 . . . . . . 7 (𝜑𝐴𝐵)
714, 5, 4, 69, 70eliccd 41342 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
7268, 71elind 4098 . . . . 5 (𝜑𝐴 ∈ (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
73 icossicc 12678 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
7473a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
75 eqid 2797 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7618, 75restntr 21478 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7712, 6, 74, 76syl3anc 1364 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7872, 77eleqtrrd 2888 . . . 4 (𝜑𝐴 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
79 eqid 2797 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
809, 79rerest 23099 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
816, 80syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
8281eqcomd 2803 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8382fveq2d 6549 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8483fveq1d 6547 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8578, 84eleqtrd 2887 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8671snssd 4655 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵))
87 ssequn2 4086 . . . . . . . 8 ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8886, 87sylib 219 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8988eqcomd 2803 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴}))
9089oveq2d 7039 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))
9190fveq2d 6549 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))))
92 uncom 4056 . . . . 5 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
93 snunioo 12718 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9441, 13, 61, 93syl3anc 1364 . . . . 5 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9592, 94syl5req 2846 . . . 4 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
9691, 95fveq12d 6552 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
9785, 96eleqtrd 2887 . 2 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
981, 3, 8, 9, 10, 97limcres 24171 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1525  wcel 2083  wral 3107  cdif 3862  cun 3863  cin 3864  wss 3865  {csn 4478   cuni 4751   class class class wbr 4968  ran crn 5451  cres 5452  wf 6228  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  -∞cmnf 10526  *cxr 10527   < clt 10528  cle 10529  (,)cioo 12592  [,)cico 12594  [,]cicc 12595  t crest 16527  TopOpenctopn 16528  topGenctg 16544  fldccnfld 20231  Topctop 21189  intcnt 21313   lim climc 24147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ico 12598  df-icc 12599  df-fz 12747  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-topn 16530  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-cnp 21524  df-xms 22617  df-ms 22618  df-limc 24151
This theorem is referenced by:  cncfiooicclem1  41739  fourierdlem82  42037  fourierdlem93  42048  fourierdlem111  42066
  Copyright terms: Public domain W3C validator