| Step | Hyp | Ref
| Expression |
| 1 | | limciccioolb.4 |
. 2
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 2 | | ioossicc 13455 |
. . 3
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 4 | | limciccioolb.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | | limciccioolb.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 6 | 4, 5 | iccssred 13456 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 7 | | ax-resscn 11191 |
. . 3
⊢ ℝ
⊆ ℂ |
| 8 | 6, 7 | sstrdi 3976 |
. 2
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 9 | | eqid 2736 |
. 2
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 10 | | eqid 2736 |
. 2
⊢
((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐴})) |
| 11 | | retop 24705 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) ∈ Top |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘ran (,))
∈ Top) |
| 13 | 5 | rexrd 11290 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 14 | | icossre 13450 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴[,)𝐵) ⊆
ℝ) |
| 15 | 4, 13, 14 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ ℝ) |
| 16 | | difssd 4117 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ) |
| 17 | 15, 16 | unssd 4172 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ) |
| 18 | | uniretop 24706 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 19 | 17, 18 | sseqtrdi 4004 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,))) |
| 20 | | elioore 13397 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ) |
| 21 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑥) |
| 23 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵)) |
| 24 | | mnfxr 11297 |
. . . . . . . . . . . . . . . . . . 19
⊢ -∞
∈ ℝ* |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈
ℝ*) |
| 26 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈
ℝ*) |
| 27 | | elioo2 13408 |
. . . . . . . . . . . . . . . . . 18
⊢
((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵))) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵))) |
| 29 | 23, 28 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵)) |
| 30 | 29 | simp3d 1144 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 < 𝐵) |
| 32 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐴 ∈ ℝ) |
| 33 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝐵 ∈
ℝ*) |
| 34 | | elico2 13432 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
| 35 | 32, 33, 34 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
| 36 | 21, 22, 31, 35 | mpbir3and 1343 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → 𝑥 ∈ (𝐴[,)𝐵)) |
| 37 | 36 | orcd 873 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
| 38 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ) |
| 39 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ 𝐴 ≤ 𝑥) |
| 40 | 39 | intnanrd 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 41 | 4 | rexrd 11290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝐴 ∈
ℝ*) |
| 43 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝐵 ∈
ℝ*) |
| 44 | 38 | rexrd 11290 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ ℝ*) |
| 45 | | elicc4 13435 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 46 | 42, 43, 44, 45 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 47 | 40, 46 | mtbird 325 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) |
| 48 | 38, 47 | eldifd 3942 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) |
| 49 | 48 | olcd 874 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴 ≤ 𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
| 50 | 37, 49 | pm2.61dan 812 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
| 51 | | elun 4133 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
| 52 | 50, 51 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
| 53 | 52 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
| 54 | | dfss3 3952 |
. . . . . . . . 9
⊢
((-∞(,)𝐵)
⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
| 55 | 53, 54 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
| 56 | | eqid 2736 |
. . . . . . . . 9
⊢ ∪ (topGen‘ran (,)) = ∪
(topGen‘ran (,)) |
| 57 | 56 | ntrss 22998 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran
(,)))‘(-∞(,)𝐵))
⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
| 58 | 12, 19, 55, 57 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
| 59 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 60 | 4 | mnfltd 13145 |
. . . . . . . . 9
⊢ (𝜑 → -∞ < 𝐴) |
| 61 | | limciccioolb.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
| 62 | 59, 13, 4, 60, 61 | eliood 45494 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (-∞(,)𝐵)) |
| 63 | | iooretop 24709 |
. . . . . . . . . 10
⊢
(-∞(,)𝐵)
∈ (topGen‘ran (,)) |
| 64 | 63 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran
(,))) |
| 65 | | isopn3i 23025 |
. . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵)) |
| 66 | 12, 64, 65 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵)) |
| 67 | 62, 66 | eleqtrrd 2838 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ((int‘(topGen‘ran
(,)))‘(-∞(,)𝐵))) |
| 68 | 58, 67 | sseldd 3964 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
| 69 | 4 | leidd 11808 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 70 | 4, 5, 61 | ltled 11388 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 71 | 4, 5, 4, 69, 70 | eliccd 45500 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 72 | 68, 71 | elind 4180 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
| 73 | | icossicc 13458 |
. . . . . . 7
⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| 74 | 73 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 75 | | eqid 2736 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) |
| 76 | 18, 75 | restntr 23125 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran
(,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
| 77 | 12, 6, 74, 76 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
| 78 | 72, 77 | eleqtrrd 2838 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ((int‘((topGen‘ran (,))
↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) |
| 79 | | eqid 2736 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 80 | 9, 79 | rerest 24748 |
. . . . . . . 8
⊢ ((𝐴[,]𝐵) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
| 81 | 6, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
| 82 | 81 | eqcomd 2742 |
. . . . . 6
⊢ (𝜑 → ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,]𝐵))) |
| 83 | 82 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 →
(int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))) |
| 84 | 83 | fveq1d 6883 |
. . . 4
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) |
| 85 | 78, 84 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵))) |
| 86 | 71 | snssd 4790 |
. . . . . . . 8
⊢ (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵)) |
| 87 | | ssequn2 4169 |
. . . . . . . 8
⊢ ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵)) |
| 88 | 86, 87 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵)) |
| 89 | 88 | eqcomd 2742 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴})) |
| 90 | 89 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐴}))) |
| 91 | 90 | fveq2d 6885 |
. . . 4
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))) |
| 92 | | uncom 4138 |
. . . . 5
⊢ ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵)) |
| 93 | | snunioo 13500 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 94 | 41, 13, 61, 93 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 95 | 92, 94 | eqtr2id 2784 |
. . . 4
⊢ (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴})) |
| 96 | 91, 95 | fveq12d 6888 |
. . 3
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) |
| 97 | 85, 96 | eleqtrd 2837 |
. 2
⊢ (𝜑 → 𝐴 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴}))) |
| 98 | 1, 3, 8, 9, 10, 97 | limcres 25844 |
1
⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) |