Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   GIF version

Theorem limciccioolb 45617
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1 (𝜑𝐴 ∈ ℝ)
limciccioolb.2 (𝜑𝐵 ∈ ℝ)
limciccioolb.3 (𝜑𝐴 < 𝐵)
limciccioolb.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limciccioolb (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))

Proof of Theorem limciccioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13455 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limciccioolb.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limciccioolb.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13456 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11191 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3976 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2736 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2736 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))
11 retop 24705 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
135rexrd 11290 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
14 icossre 13450 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
154, 13, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
16 difssd 4117 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4172 . . . . . . . . 9 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24706 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 4004 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13397 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ)
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ ℝ)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴𝑥)
23 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵))
24 mnfxr 11297 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈ ℝ*)
2613adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ*)
27 elioo2 13408 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2825, 26, 27syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2923, 28mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵))
3029simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵)
3130adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 < 𝐵)
324ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴 ∈ ℝ)
3313ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐵 ∈ ℝ*)
34 elico2 13432 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3532, 33, 34syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3621, 22, 31, 35mpbir3and 1343 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ (𝐴[,)𝐵))
3736orcd 873 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3820ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ)
39 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝐴𝑥)
4039intnanrd 489 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ (𝐴𝑥𝑥𝐵))
414rexrd 11290 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
4241ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
4313ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐵 ∈ ℝ*)
4438rexrd 11290 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
45 elicc4 13435 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4642, 43, 44, 45syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4740, 46mtbird 325 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4838, 47eldifd 3942 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4948olcd 874 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5037, 49pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
51 elun 4133 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5352ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
54 dfss3 3952 . . . . . . . . 9 ((-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5553, 54sylibr 234 . . . . . . . 8 (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
56 eqid 2736 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5756ntrss 22998 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5812, 19, 55, 57syl3anc 1373 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5924a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
604mnfltd 13145 . . . . . . . . 9 (𝜑 → -∞ < 𝐴)
61 limciccioolb.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
6259, 13, 4, 60, 61eliood 45494 . . . . . . . 8 (𝜑𝐴 ∈ (-∞(,)𝐵))
63 iooretop 24709 . . . . . . . . . 10 (-∞(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
65 isopn3i 23025 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6612, 64, 65syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6762, 66eleqtrrd 2838 . . . . . . 7 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)))
6858, 67sseldd 3964 . . . . . 6 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
694leidd 11808 . . . . . . 7 (𝜑𝐴𝐴)
704, 5, 61ltled 11388 . . . . . . 7 (𝜑𝐴𝐵)
714, 5, 4, 69, 70eliccd 45500 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
7268, 71elind 4180 . . . . 5 (𝜑𝐴 ∈ (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
73 icossicc 13458 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
7473a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
75 eqid 2736 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7618, 75restntr 23125 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7712, 6, 74, 76syl3anc 1373 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7872, 77eleqtrrd 2838 . . . 4 (𝜑𝐴 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
79 eqid 2736 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
809, 79rerest 24748 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
816, 80syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
8281eqcomd 2742 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8382fveq2d 6885 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8483fveq1d 6883 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8578, 84eleqtrd 2837 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8671snssd 4790 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵))
87 ssequn2 4169 . . . . . . . 8 ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8886, 87sylib 218 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8988eqcomd 2742 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴}))
9089oveq2d 7426 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))
9190fveq2d 6885 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))))
92 uncom 4138 . . . . 5 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
93 snunioo 13500 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9441, 13, 61, 93syl3anc 1373 . . . . 5 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9592, 94eqtr2id 2784 . . . 4 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
9691, 95fveq12d 6888 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
9785, 96eleqtrd 2837 . 2 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
981, 3, 8, 9, 10, 97limcres 25844 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cdif 3928  cun 3929  cin 3930  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  ran crn 5660  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  t crest 17439  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320  Topctop 22836  intcnt 22960   lim climc 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-cnp 23171  df-xms 24264  df-ms 24265  df-limc 25824
This theorem is referenced by:  cncfiooicclem1  45889  fourierdlem82  46184  fourierdlem93  46195  fourierdlem111  46213
  Copyright terms: Public domain W3C validator