Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   GIF version

Theorem limciccioolb 45542
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1 (𝜑𝐴 ∈ ℝ)
limciccioolb.2 (𝜑𝐵 ∈ ℝ)
limciccioolb.3 (𝜑𝐴 < 𝐵)
limciccioolb.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limciccioolb (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))

Proof of Theorem limciccioolb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13493 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limciccioolb.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limciccioolb.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13494 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11241 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 4021 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2740 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2740 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))
11 retop 24803 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
135rexrd 11340 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
14 icossre 13488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
154, 13, 14syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
16 difssd 4160 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4215 . . . . . . . . 9 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24804 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 4059 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13437 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-∞(,)𝐵) → 𝑥 ∈ ℝ)
2120ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ ℝ)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴𝑥)
23 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ (-∞(,)𝐵))
24 mnfxr 11347 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → -∞ ∈ ℝ*)
2613adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝐵 ∈ ℝ*)
27 elioo2 13448 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2825, 26, 27syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (-∞(,)𝐵) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵)))
2923, 28mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐵))
3029simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 < 𝐵)
3130adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 < 𝐵)
324ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐴 ∈ ℝ)
3313ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝐵 ∈ ℝ*)
34 elico2 13471 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3532, 33, 34syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
3621, 22, 31, 35mpbir3and 1342 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → 𝑥 ∈ (𝐴[,)𝐵))
3736orcd 872 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3820ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ)
39 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝐴𝑥)
4039intnanrd 489 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ (𝐴𝑥𝑥𝐵))
414rexrd 11340 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
4241ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
4313ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝐵 ∈ ℝ*)
4438rexrd 11340 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
45 elicc4 13474 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4642, 43, 44, 45syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝐴𝑥𝑥𝐵)))
4740, 46mtbird 325 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4838, 47eldifd 3987 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4948olcd 873 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (-∞(,)𝐵)) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5037, 49pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
51 elun 4176 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-∞(,)𝐵)) → 𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5352ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
54 dfss3 3997 . . . . . . . . 9 ((-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (-∞(,)𝐵)𝑥 ∈ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5553, 54sylibr 234 . . . . . . . 8 (𝜑 → (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
56 eqid 2740 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5756ntrss 23084 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (-∞(,)𝐵) ⊆ ((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5812, 19, 55, 57syl3anc 1371 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5924a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
604mnfltd 13187 . . . . . . . . 9 (𝜑 → -∞ < 𝐴)
61 limciccioolb.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
6259, 13, 4, 60, 61eliood 45416 . . . . . . . 8 (𝜑𝐴 ∈ (-∞(,)𝐵))
63 iooretop 24807 . . . . . . . . . 10 (-∞(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
65 isopn3i 23111 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6612, 64, 65syl2anc 583 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)) = (-∞(,)𝐵))
6762, 66eleqtrrd 2847 . . . . . . 7 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘(-∞(,)𝐵)))
6858, 67sseldd 4009 . . . . . 6 (𝜑𝐴 ∈ ((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
694leidd 11856 . . . . . . 7 (𝜑𝐴𝐴)
704, 5, 61ltled 11438 . . . . . . 7 (𝜑𝐴𝐵)
714, 5, 4, 69, 70eliccd 45422 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
7268, 71elind 4223 . . . . 5 (𝜑𝐴 ∈ (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
73 icossicc 13496 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
7473a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
75 eqid 2740 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7618, 75restntr 23211 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7712, 6, 74, 76syl3anc 1371 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴[,)𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7872, 77eleqtrrd 2847 . . . 4 (𝜑𝐴 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
79 eqid 2740 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
809, 79rerest 24845 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
816, 80syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
8281eqcomd 2746 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8382fveq2d 6924 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8483fveq1d 6922 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8578, 84eleqtrd 2846 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)))
8671snssd 4834 . . . . . . . 8 (𝜑 → {𝐴} ⊆ (𝐴[,]𝐵))
87 ssequn2 4212 . . . . . . . 8 ({𝐴} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8886, 87sylib 218 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐴}) = (𝐴[,]𝐵))
8988eqcomd 2746 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐴}))
9089oveq2d 7464 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))
9190fveq2d 6924 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴}))))
92 uncom 4181 . . . . 5 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
93 snunioo 13538 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9441, 13, 61, 93syl3anc 1371 . . . . 5 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
9592, 94eqtr2id 2793 . . . 4 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
9691, 95fveq12d 6927 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
9785, 96eleqtrd 2846 . 2 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
981, 3, 8, 9, 10, 97limcres 25941 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  cin 3975  wss 3976  {csn 4648   cuni 4931   class class class wbr 5166  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Topctop 22920  intcnt 23046   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921
This theorem is referenced by:  cncfiooicclem1  45814  fourierdlem82  46109  fourierdlem93  46120  fourierdlem111  46138
  Copyright terms: Public domain W3C validator