MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumullem Structured version   Visualization version   GIF version

Theorem smumullem 16526
Description: Lemma for smumul 16527. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
smumullem.a (𝜑𝐴 ∈ ℤ)
smumullem.b (𝜑𝐵 ∈ ℤ)
smumullem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smumullem (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))

Proof of Theorem smumullem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smumullem.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7439 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 13720 . . . . . . . . . 10 (0..^0) = ∅
42, 3eqtrdi 2791 . . . . . . . . 9 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 4228 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ ∅))
6 in0 4401 . . . . . . . 8 ((bits‘𝐴) ∩ ∅) = ∅
75, 6eqtrdi 2791 . . . . . . 7 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ∅)
87oveq1d 7446 . . . . . 6 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (∅ smul (bits‘𝐵)))
9 bitsss 16460 . . . . . . 7 (bits‘𝐵) ⊆ ℕ0
10 smu02 16521 . . . . . . 7 ((bits‘𝐵) ⊆ ℕ0 → (∅ smul (bits‘𝐵)) = ∅)
119, 10ax-mp 5 . . . . . 6 (∅ smul (bits‘𝐵)) = ∅
128, 11eqtrdi 2791 . . . . 5 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = ∅)
13 oveq2 7439 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
14 2cn 12339 . . . . . . . . 9 2 ∈ ℂ
15 exp0 14103 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1614, 15ax-mp 5 . . . . . . . 8 (2↑0) = 1
1713, 16eqtrdi 2791 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1817oveq2d 7447 . . . . . 6 (𝑥 = 0 → (𝐴 mod (2↑𝑥)) = (𝐴 mod 1))
1918fvoveq1d 7453 . . . . 5 (𝑥 = 0 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod 1) · 𝐵)))
2012, 19eqeq12d 2751 . . . 4 (𝑥 = 0 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ ∅ = (bits‘((𝐴 mod 1) · 𝐵))))
2120imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))))
22 oveq2 7439 . . . . . . 7 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
2322ineq2d 4228 . . . . . 6 (𝑥 = 𝑘 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑘)))
2423oveq1d 7446 . . . . 5 (𝑥 = 𝑘 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)))
25 oveq2 7439 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2625oveq2d 7447 . . . . . 6 (𝑥 = 𝑘 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑘)))
2726fvoveq1d 7453 . . . . 5 (𝑥 = 𝑘 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))
2824, 27eqeq12d 2751 . . . 4 (𝑥 = 𝑘 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))))
2928imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))))
30 oveq2 7439 . . . . . . 7 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
3130ineq2d 4228 . . . . . 6 (𝑥 = (𝑘 + 1) → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1))))
3231oveq1d 7446 . . . . 5 (𝑥 = (𝑘 + 1) → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)))
33 oveq2 7439 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
3433oveq2d 7447 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑(𝑘 + 1))))
3534fvoveq1d 7453 . . . . 5 (𝑥 = (𝑘 + 1) → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))
3632, 35eqeq12d 2751 . . . 4 (𝑥 = (𝑘 + 1) → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
3736imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
38 oveq2 7439 . . . . . . 7 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3938ineq2d 4228 . . . . . 6 (𝑥 = 𝑁 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑁)))
4039oveq1d 7446 . . . . 5 (𝑥 = 𝑁 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)))
41 oveq2 7439 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
4241oveq2d 7447 . . . . . 6 (𝑥 = 𝑁 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑁)))
4342fvoveq1d 7453 . . . . 5 (𝑥 = 𝑁 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
4440, 43eqeq12d 2751 . . . 4 (𝑥 = 𝑁 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
4544imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))))
46 smumullem.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
47 zmod10 13924 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 1) = 0)
4846, 47syl 17 . . . . . . 7 (𝜑 → (𝐴 mod 1) = 0)
4948oveq1d 7446 . . . . . 6 (𝜑 → ((𝐴 mod 1) · 𝐵) = (0 · 𝐵))
50 smumullem.b . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
5150zcnd 12721 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5251mul02d 11457 . . . . . 6 (𝜑 → (0 · 𝐵) = 0)
5349, 52eqtrd 2775 . . . . 5 (𝜑 → ((𝐴 mod 1) · 𝐵) = 0)
5453fveq2d 6911 . . . 4 (𝜑 → (bits‘((𝐴 mod 1) · 𝐵)) = (bits‘0))
55 0bits 16473 . . . 4 (bits‘0) = ∅
5654, 55eqtr2di 2792 . . 3 (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))
57 oveq1 7438 . . . . . 6 ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
58 bitsss 16460 . . . . . . . . 9 (bits‘𝐴) ⊆ ℕ0
5958a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
609a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐵) ⊆ ℕ0)
61 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
6259, 60, 61smup1 16523 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
63 bitsinv1lem 16475 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6446, 63sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6564oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵))
6646adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
67 2nn 12337 . . . . . . . . . . . . . . 15 2 ∈ ℕ
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
6968, 61nnexpcld 14281 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
7066, 69zmodcld 13929 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℕ0)
7170nn0cnd 12587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℂ)
7269nnnn0d 12585 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ0)
73 0nn0 12539 . . . . . . . . . . . . 13 0 ∈ ℕ0
74 ifcl 4576 . . . . . . . . . . . . 13 (((2↑𝑘) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7572, 73, 74sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7675nn0cnd 12587 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℂ)
7751adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
7871, 76, 77adddird 11284 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)))
7976, 77mulcomd 11280 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
8079oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8165, 78, 803eqtrd 2779 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8281fveq2d 6911 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8370nn0zd 12637 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℤ)
8450adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
8583, 84zmulcld 12726 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ)
8675nn0zd 12637 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℤ)
8784, 86zmulcld 12726 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ)
88 sadadd 16501 . . . . . . . . 9 ((((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ ∧ (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8985, 87, 88syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
90 oveq2 7439 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · (2↑𝑘)) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9190fveqeq2d 6915 . . . . . . . . . 10 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
92 oveq2 7439 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · 0) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9392fveqeq2d 6915 . . . . . . . . . 10 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
94 bitsshft 16509 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
9550, 94sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
96 ibar 528 . . . . . . . . . . . 12 (𝑘 ∈ (bits‘𝐴) → ((𝑛𝑘) ∈ (bits‘𝐵) ↔ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))))
9796rabbidv 3441 . . . . . . . . . . 11 (𝑘 ∈ (bits‘𝐴) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9895, 97sylan9req 2796 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9977adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → 𝐵 ∈ ℂ)
10099mul01d 11458 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (𝐵 · 0) = 0)
101100fveq2d 6911 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = (bits‘0))
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ 𝑘 ∈ (bits‘𝐴))
103102intnanrd 489 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
104103ralrimivw 3148 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
105 rabeq0 4394 . . . . . . . . . . . 12 ({𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
106104, 105sylibr 234 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅)
10755, 101, 1063eqtr4a 2801 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
10891, 93, 98, 107ifbothda 4569 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
109108oveq2d 7447 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11082, 89, 1093eqtr2d 2781 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11162, 110eqeq12d 2751 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ↔ ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})))
11257, 111imbitrrid 246 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
113112expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
114113a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))) → (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
11521, 29, 37, 45, 56, 114nn0ind 12711 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
1161, 115mpcom 38 1 (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cin 3962  wss 3963  c0 4339  ifcif 4531  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  ..^cfzo 13691   mod cmo 13906  cexp 14099  bitscbits 16453   sadd csad 16454   smul csmu 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-bits 16456  df-sad 16485  df-smu 16510
This theorem is referenced by:  smumul  16527
  Copyright terms: Public domain W3C validator