MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumullem Structured version   Visualization version   GIF version

Theorem smumullem 16372
Description: Lemma for smumul 16373. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
smumullem.a (𝜑𝐴 ∈ ℤ)
smumullem.b (𝜑𝐵 ∈ ℤ)
smumullem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smumullem (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))

Proof of Theorem smumullem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smumullem.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7365 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 13596 . . . . . . . . . 10 (0..^0) = ∅
42, 3eqtrdi 2792 . . . . . . . . 9 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 4172 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ ∅))
6 in0 4351 . . . . . . . 8 ((bits‘𝐴) ∩ ∅) = ∅
75, 6eqtrdi 2792 . . . . . . 7 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ∅)
87oveq1d 7372 . . . . . 6 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (∅ smul (bits‘𝐵)))
9 bitsss 16306 . . . . . . 7 (bits‘𝐵) ⊆ ℕ0
10 smu02 16367 . . . . . . 7 ((bits‘𝐵) ⊆ ℕ0 → (∅ smul (bits‘𝐵)) = ∅)
119, 10ax-mp 5 . . . . . 6 (∅ smul (bits‘𝐵)) = ∅
128, 11eqtrdi 2792 . . . . 5 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = ∅)
13 oveq2 7365 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
14 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
15 exp0 13971 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1614, 15ax-mp 5 . . . . . . . 8 (2↑0) = 1
1713, 16eqtrdi 2792 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1817oveq2d 7373 . . . . . 6 (𝑥 = 0 → (𝐴 mod (2↑𝑥)) = (𝐴 mod 1))
1918fvoveq1d 7379 . . . . 5 (𝑥 = 0 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod 1) · 𝐵)))
2012, 19eqeq12d 2752 . . . 4 (𝑥 = 0 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ ∅ = (bits‘((𝐴 mod 1) · 𝐵))))
2120imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))))
22 oveq2 7365 . . . . . . 7 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
2322ineq2d 4172 . . . . . 6 (𝑥 = 𝑘 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑘)))
2423oveq1d 7372 . . . . 5 (𝑥 = 𝑘 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)))
25 oveq2 7365 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2625oveq2d 7373 . . . . . 6 (𝑥 = 𝑘 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑘)))
2726fvoveq1d 7379 . . . . 5 (𝑥 = 𝑘 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))
2824, 27eqeq12d 2752 . . . 4 (𝑥 = 𝑘 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))))
2928imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))))
30 oveq2 7365 . . . . . . 7 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
3130ineq2d 4172 . . . . . 6 (𝑥 = (𝑘 + 1) → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1))))
3231oveq1d 7372 . . . . 5 (𝑥 = (𝑘 + 1) → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)))
33 oveq2 7365 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
3433oveq2d 7373 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑(𝑘 + 1))))
3534fvoveq1d 7379 . . . . 5 (𝑥 = (𝑘 + 1) → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))
3632, 35eqeq12d 2752 . . . 4 (𝑥 = (𝑘 + 1) → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
3736imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
38 oveq2 7365 . . . . . . 7 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3938ineq2d 4172 . . . . . 6 (𝑥 = 𝑁 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑁)))
4039oveq1d 7372 . . . . 5 (𝑥 = 𝑁 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)))
41 oveq2 7365 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
4241oveq2d 7373 . . . . . 6 (𝑥 = 𝑁 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑁)))
4342fvoveq1d 7379 . . . . 5 (𝑥 = 𝑁 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
4440, 43eqeq12d 2752 . . . 4 (𝑥 = 𝑁 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
4544imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))))
46 smumullem.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
47 zmod10 13792 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 1) = 0)
4846, 47syl 17 . . . . . . 7 (𝜑 → (𝐴 mod 1) = 0)
4948oveq1d 7372 . . . . . 6 (𝜑 → ((𝐴 mod 1) · 𝐵) = (0 · 𝐵))
50 smumullem.b . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
5150zcnd 12608 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5251mul02d 11353 . . . . . 6 (𝜑 → (0 · 𝐵) = 0)
5349, 52eqtrd 2776 . . . . 5 (𝜑 → ((𝐴 mod 1) · 𝐵) = 0)
5453fveq2d 6846 . . . 4 (𝜑 → (bits‘((𝐴 mod 1) · 𝐵)) = (bits‘0))
55 0bits 16319 . . . 4 (bits‘0) = ∅
5654, 55eqtr2di 2793 . . 3 (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))
57 oveq1 7364 . . . . . 6 ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
58 bitsss 16306 . . . . . . . . 9 (bits‘𝐴) ⊆ ℕ0
5958a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
609a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐵) ⊆ ℕ0)
61 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
6259, 60, 61smup1 16369 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
63 bitsinv1lem 16321 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6446, 63sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6564oveq1d 7372 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵))
6646adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
67 2nn 12226 . . . . . . . . . . . . . . 15 2 ∈ ℕ
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
6968, 61nnexpcld 14148 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
7066, 69zmodcld 13797 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℕ0)
7170nn0cnd 12475 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℂ)
7269nnnn0d 12473 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ0)
73 0nn0 12428 . . . . . . . . . . . . 13 0 ∈ ℕ0
74 ifcl 4531 . . . . . . . . . . . . 13 (((2↑𝑘) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7572, 73, 74sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7675nn0cnd 12475 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℂ)
7751adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
7871, 76, 77adddird 11180 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)))
7976, 77mulcomd 11176 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
8079oveq2d 7373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8165, 78, 803eqtrd 2780 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8281fveq2d 6846 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8370nn0zd 12525 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℤ)
8450adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
8583, 84zmulcld 12613 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ)
8675nn0zd 12525 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℤ)
8784, 86zmulcld 12613 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ)
88 sadadd 16347 . . . . . . . . 9 ((((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ ∧ (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8985, 87, 88syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
90 oveq2 7365 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · (2↑𝑘)) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9190fveqeq2d 6850 . . . . . . . . . 10 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
92 oveq2 7365 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · 0) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9392fveqeq2d 6850 . . . . . . . . . 10 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
94 bitsshft 16355 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
9550, 94sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
96 ibar 529 . . . . . . . . . . . 12 (𝑘 ∈ (bits‘𝐴) → ((𝑛𝑘) ∈ (bits‘𝐵) ↔ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))))
9796rabbidv 3415 . . . . . . . . . . 11 (𝑘 ∈ (bits‘𝐴) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9895, 97sylan9req 2797 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9977adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → 𝐵 ∈ ℂ)
10099mul01d 11354 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (𝐵 · 0) = 0)
101100fveq2d 6846 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = (bits‘0))
102 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ 𝑘 ∈ (bits‘𝐴))
103102intnanrd 490 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
104103ralrimivw 3147 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
105 rabeq0 4344 . . . . . . . . . . . 12 ({𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
106104, 105sylibr 233 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅)
10755, 101, 1063eqtr4a 2802 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
10891, 93, 98, 107ifbothda 4524 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
109108oveq2d 7373 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11082, 89, 1093eqtr2d 2782 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11162, 110eqeq12d 2752 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ↔ ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})))
11257, 111syl5ibr 245 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
113112expcom 414 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
114113a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))) → (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
11521, 29, 37, 45, 56, 114nn0ind 12598 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
1161, 115mpcom 38 1 (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cin 3909  wss 3910  c0 4282  ifcif 4486  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  ..^cfzo 13567   mod cmo 13774  cexp 13967  bitscbits 16299   sadd csad 16300   smul csmu 16301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-bits 16302  df-sad 16331  df-smu 16356
This theorem is referenced by:  smumul  16373
  Copyright terms: Public domain W3C validator