MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumullem Structured version   Visualization version   GIF version

Theorem smumullem 16538
Description: Lemma for smumul 16539. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
smumullem.a (𝜑𝐴 ∈ ℤ)
smumullem.b (𝜑𝐵 ∈ ℤ)
smumullem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smumullem (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))

Proof of Theorem smumullem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smumullem.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7456 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = (0..^0))
3 fzo0 13740 . . . . . . . . . 10 (0..^0) = ∅
42, 3eqtrdi 2796 . . . . . . . . 9 (𝑥 = 0 → (0..^𝑥) = ∅)
54ineq2d 4241 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ ∅))
6 in0 4418 . . . . . . . 8 ((bits‘𝐴) ∩ ∅) = ∅
75, 6eqtrdi 2796 . . . . . . 7 (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ∅)
87oveq1d 7463 . . . . . 6 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (∅ smul (bits‘𝐵)))
9 bitsss 16472 . . . . . . 7 (bits‘𝐵) ⊆ ℕ0
10 smu02 16533 . . . . . . 7 ((bits‘𝐵) ⊆ ℕ0 → (∅ smul (bits‘𝐵)) = ∅)
119, 10ax-mp 5 . . . . . 6 (∅ smul (bits‘𝐵)) = ∅
128, 11eqtrdi 2796 . . . . 5 (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = ∅)
13 oveq2 7456 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
14 2cn 12368 . . . . . . . . 9 2 ∈ ℂ
15 exp0 14116 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1614, 15ax-mp 5 . . . . . . . 8 (2↑0) = 1
1713, 16eqtrdi 2796 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1817oveq2d 7464 . . . . . 6 (𝑥 = 0 → (𝐴 mod (2↑𝑥)) = (𝐴 mod 1))
1918fvoveq1d 7470 . . . . 5 (𝑥 = 0 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod 1) · 𝐵)))
2012, 19eqeq12d 2756 . . . 4 (𝑥 = 0 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ ∅ = (bits‘((𝐴 mod 1) · 𝐵))))
2120imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))))
22 oveq2 7456 . . . . . . 7 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
2322ineq2d 4241 . . . . . 6 (𝑥 = 𝑘 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑘)))
2423oveq1d 7463 . . . . 5 (𝑥 = 𝑘 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)))
25 oveq2 7456 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2625oveq2d 7464 . . . . . 6 (𝑥 = 𝑘 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑘)))
2726fvoveq1d 7470 . . . . 5 (𝑥 = 𝑘 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))
2824, 27eqeq12d 2756 . . . 4 (𝑥 = 𝑘 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))))
2928imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))))
30 oveq2 7456 . . . . . . 7 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
3130ineq2d 4241 . . . . . 6 (𝑥 = (𝑘 + 1) → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1))))
3231oveq1d 7463 . . . . 5 (𝑥 = (𝑘 + 1) → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)))
33 oveq2 7456 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
3433oveq2d 7464 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑(𝑘 + 1))))
3534fvoveq1d 7470 . . . . 5 (𝑥 = (𝑘 + 1) → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))
3632, 35eqeq12d 2756 . . . 4 (𝑥 = (𝑘 + 1) → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
3736imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
38 oveq2 7456 . . . . . . 7 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3938ineq2d 4241 . . . . . 6 (𝑥 = 𝑁 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑁)))
4039oveq1d 7463 . . . . 5 (𝑥 = 𝑁 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)))
41 oveq2 7456 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
4241oveq2d 7464 . . . . . 6 (𝑥 = 𝑁 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑁)))
4342fvoveq1d 7470 . . . . 5 (𝑥 = 𝑁 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
4440, 43eqeq12d 2756 . . . 4 (𝑥 = 𝑁 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
4544imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))))
46 smumullem.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
47 zmod10 13938 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 mod 1) = 0)
4846, 47syl 17 . . . . . . 7 (𝜑 → (𝐴 mod 1) = 0)
4948oveq1d 7463 . . . . . 6 (𝜑 → ((𝐴 mod 1) · 𝐵) = (0 · 𝐵))
50 smumullem.b . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
5150zcnd 12748 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5251mul02d 11488 . . . . . 6 (𝜑 → (0 · 𝐵) = 0)
5349, 52eqtrd 2780 . . . . 5 (𝜑 → ((𝐴 mod 1) · 𝐵) = 0)
5453fveq2d 6924 . . . 4 (𝜑 → (bits‘((𝐴 mod 1) · 𝐵)) = (bits‘0))
55 0bits 16485 . . . 4 (bits‘0) = ∅
5654, 55eqtr2di 2797 . . 3 (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵)))
57 oveq1 7455 . . . . . 6 ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
58 bitsss 16472 . . . . . . . . 9 (bits‘𝐴) ⊆ ℕ0
5958a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
609a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘𝐵) ⊆ ℕ0)
61 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
6259, 60, 61smup1 16535 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
63 bitsinv1lem 16487 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6446, 63sylan 579 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
6564oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵))
6646adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
67 2nn 12366 . . . . . . . . . . . . . . 15 2 ∈ ℕ
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
6968, 61nnexpcld 14294 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
7066, 69zmodcld 13943 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℕ0)
7170nn0cnd 12615 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℂ)
7269nnnn0d 12613 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ0)
73 0nn0 12568 . . . . . . . . . . . . 13 0 ∈ ℕ0
74 ifcl 4593 . . . . . . . . . . . . 13 (((2↑𝑘) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7572, 73, 74sylancl 585 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℕ0)
7675nn0cnd 12615 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℂ)
7751adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
7871, 76, 77adddird 11315 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)))
7976, 77mulcomd 11311 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
8079oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8165, 78, 803eqtrd 2784 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))
8281fveq2d 6924 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8370nn0zd 12665 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℤ)
8450adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
8583, 84zmulcld 12753 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ)
8675nn0zd 12665 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℤ)
8784, 86zmulcld 12753 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ)
88 sadadd 16513 . . . . . . . . 9 ((((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ ∧ (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
8985, 87, 88syl2anc 583 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))))
90 oveq2 7456 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · (2↑𝑘)) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9190fveqeq2d 6928 . . . . . . . . . 10 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
92 oveq2 7456 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → (𝐵 · 0) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))
9392fveqeq2d 6928 . . . . . . . . . 10 (0 = if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) → ((bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
94 bitsshft 16521 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
9550, 94sylan 579 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘))))
96 ibar 528 . . . . . . . . . . . 12 (𝑘 ∈ (bits‘𝐴) → ((𝑛𝑘) ∈ (bits‘𝐵) ↔ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))))
9796rabbidv 3451 . . . . . . . . . . 11 (𝑘 ∈ (bits‘𝐴) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑘) ∈ (bits‘𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9895, 97sylan9req 2801 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
9977adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → 𝐵 ∈ ℂ)
10099mul01d 11489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (𝐵 · 0) = 0)
101100fveq2d 6924 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = (bits‘0))
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ 𝑘 ∈ (bits‘𝐴))
103102intnanrd 489 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
104103ralrimivw 3156 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
105 rabeq0 4411 . . . . . . . . . . . 12 ({𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵)))
106104, 105sylibr 234 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))} = ∅)
10755, 101, 1063eqtr4a 2806 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
10891, 93, 98, 107ifbothda 4586 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})
109108oveq2d 7464 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11082, 89, 1093eqtr2d 2786 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}))
11162, 110eqeq12d 2756 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ↔ ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛𝑘) ∈ (bits‘𝐵))})))
11257, 111imbitrrid 246 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))
113112expcom 413 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
114113a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))) → (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))))
11521, 29, 37, 45, 56, 114nn0ind 12738 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))
1161, 115mpcom 38 1 (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cin 3975  wss 3976  c0 4352  ifcif 4548  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  ..^cfzo 13711   mod cmo 13920  cexp 14112  bitscbits 16465   sadd csad 16466   smul csmu 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468  df-sad 16497  df-smu 16522
This theorem is referenced by:  smumul  16539
  Copyright terms: Public domain W3C validator