Step | Hyp | Ref
| Expression |
1 | | smumullem.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq2 7159 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (0..^𝑥) = (0..^0)) |
3 | | fzo0 13111 |
. . . . . . . . . 10
⊢ (0..^0) =
∅ |
4 | 2, 3 | eqtrdi 2810 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (0..^𝑥) = ∅) |
5 | 4 | ineq2d 4118 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ ∅)) |
6 | | in0 4288 |
. . . . . . . 8
⊢
((bits‘𝐴)
∩ ∅) = ∅ |
7 | 5, 6 | eqtrdi 2810 |
. . . . . . 7
⊢ (𝑥 = 0 → ((bits‘𝐴) ∩ (0..^𝑥)) = ∅) |
8 | 7 | oveq1d 7166 |
. . . . . 6
⊢ (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (∅ smul (bits‘𝐵))) |
9 | | bitsss 15826 |
. . . . . . 7
⊢
(bits‘𝐵)
⊆ ℕ0 |
10 | | smu02 15887 |
. . . . . . 7
⊢
((bits‘𝐵)
⊆ ℕ0 → (∅ smul (bits‘𝐵)) = ∅) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢ (∅
smul (bits‘𝐵)) =
∅ |
12 | 8, 11 | eqtrdi 2810 |
. . . . 5
⊢ (𝑥 = 0 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = ∅) |
13 | | oveq2 7159 |
. . . . . . . 8
⊢ (𝑥 = 0 → (2↑𝑥) = (2↑0)) |
14 | | 2cn 11750 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
15 | | exp0 13484 |
. . . . . . . . 9
⊢ (2 ∈
ℂ → (2↑0) = 1) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . 8
⊢
(2↑0) = 1 |
17 | 13, 16 | eqtrdi 2810 |
. . . . . . 7
⊢ (𝑥 = 0 → (2↑𝑥) = 1) |
18 | 17 | oveq2d 7167 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐴 mod (2↑𝑥)) = (𝐴 mod 1)) |
19 | 18 | fvoveq1d 7173 |
. . . . 5
⊢ (𝑥 = 0 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod 1) · 𝐵))) |
20 | 12, 19 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 0 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ ∅ = (bits‘((𝐴 mod 1) · 𝐵)))) |
21 | 20 | imbi2d 345 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → ∅ = (bits‘((𝐴 mod 1) · 𝐵))))) |
22 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘)) |
23 | 22 | ineq2d 4118 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑘))) |
24 | 23 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝑘 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵))) |
25 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘)) |
26 | 25 | oveq2d 7167 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑘))) |
27 | 26 | fvoveq1d 7173 |
. . . . 5
⊢ (𝑥 = 𝑘 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))) |
28 | 24, 27 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑘 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵)))) |
29 | 28 | imbi2d 345 |
. . 3
⊢ (𝑥 = 𝑘 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑘)) · 𝐵))))) |
30 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1))) |
31 | 30 | ineq2d 4118 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1)))) |
32 | 31 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵))) |
33 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1))) |
34 | 33 | oveq2d 7167 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑(𝑘 + 1)))) |
35 | 34 | fvoveq1d 7173 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))) |
36 | 32, 35 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))) |
37 | 36 | imbi2d 345 |
. . 3
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))) |
38 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁)) |
39 | 38 | ineq2d 4118 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((bits‘𝐴) ∩ (0..^𝑥)) = ((bits‘𝐴) ∩ (0..^𝑁))) |
40 | 39 | oveq1d 7166 |
. . . . 5
⊢ (𝑥 = 𝑁 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵))) |
41 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁)) |
42 | 41 | oveq2d 7167 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐴 mod (2↑𝑥)) = (𝐴 mod (2↑𝑁))) |
43 | 42 | fvoveq1d 7173 |
. . . . 5
⊢ (𝑥 = 𝑁 → (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))) |
44 | 40, 43 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑁 → ((((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵)) ↔ (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵)))) |
45 | 44 | imbi2d 345 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (((bits‘𝐴) ∩ (0..^𝑥)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑥)) · 𝐵))) ↔ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))))) |
46 | | smumullem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
47 | | zmod10 13305 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 mod 1) = 0) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 mod 1) = 0) |
49 | 48 | oveq1d 7166 |
. . . . . 6
⊢ (𝜑 → ((𝐴 mod 1) · 𝐵) = (0 · 𝐵)) |
50 | | smumullem.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℤ) |
51 | 50 | zcnd 12128 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
52 | 51 | mul02d 10877 |
. . . . . 6
⊢ (𝜑 → (0 · 𝐵) = 0) |
53 | 49, 52 | eqtrd 2794 |
. . . . 5
⊢ (𝜑 → ((𝐴 mod 1) · 𝐵) = 0) |
54 | 53 | fveq2d 6663 |
. . . 4
⊢ (𝜑 → (bits‘((𝐴 mod 1) · 𝐵)) =
(bits‘0)) |
55 | | 0bits 15839 |
. . . 4
⊢
(bits‘0) = ∅ |
56 | 54, 55 | eqtr2di 2811 |
. . 3
⊢ (𝜑 → ∅ =
(bits‘((𝐴 mod 1)
· 𝐵))) |
57 | | oveq1 7158 |
. . . . . 6
⊢
((((bits‘𝐴)
∩ (0..^𝑘)) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) → ((((bits‘𝐴) ∩ (0..^𝑘)) smul (bits‘𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
58 | | bitsss 15826 |
. . . . . . . . 9
⊢
(bits‘𝐴)
⊆ ℕ0 |
59 | 58 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(bits‘𝐴) ⊆
ℕ0) |
60 | 9 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(bits‘𝐵) ⊆
ℕ0) |
61 | | simpr 489 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
62 | 59, 60, 61 | smup1 15889 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(((bits‘𝐴) ∩
(0..^(𝑘 + 1))) smul
(bits‘𝐵)) =
((((bits‘𝐴) ∩
(0..^𝑘)) smul
(bits‘𝐵)) sadd {𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
63 | | bitsinv1lem 15841 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝐴 mod
(2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) |
64 | 46, 63 | sylan 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) = ((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) |
65 | 64 | oveq1d 7166 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵)) |
66 | 46 | adantr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℤ) |
67 | | 2nn 11748 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
68 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∈
ℕ) |
69 | 68, 61 | nnexpcld 13657 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑𝑘) ∈
ℕ) |
70 | 66, 69 | zmodcld 13310 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈
ℕ0) |
71 | 70 | nn0cnd 11997 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℂ) |
72 | 69 | nnnn0d 11995 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(2↑𝑘) ∈
ℕ0) |
73 | | 0nn0 11950 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
74 | | ifcl 4466 |
. . . . . . . . . . . . 13
⊢
(((2↑𝑘) ∈
ℕ0 ∧ 0 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈
ℕ0) |
75 | 72, 73, 74 | sylancl 590 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈
ℕ0) |
76 | 75 | nn0cnd 11997 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℂ) |
77 | 51 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
78 | 71, 76, 77 | adddird 10705 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵))) |
79 | 76, 77 | mulcomd 10701 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) |
80 | 79 | oveq2d 7167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 mod (2↑𝑘)) · 𝐵) + (if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) · 𝐵)) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) |
81 | 65, 78, 80 | 3eqtrd 2798 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) = (((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) |
82 | 81 | fveq2d 6663 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(bits‘((𝐴 mod
(2↑(𝑘 + 1))) ·
𝐵)) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))) |
83 | 70 | nn0zd 12125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑𝑘)) ∈ ℤ) |
84 | 50 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℤ) |
85 | 83, 84 | zmulcld 12133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ) |
86 | 75 | nn0zd 12125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0) ∈ ℤ) |
87 | 84, 86 | zmulcld 12133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ) |
88 | | sadadd 15867 |
. . . . . . . . 9
⊢ ((((𝐴 mod (2↑𝑘)) · 𝐵) ∈ ℤ ∧ (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)) ∈ ℤ) →
((bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))) |
89 | 85, 87, 88 | syl2anc 588 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = (bits‘(((𝐴 mod (2↑𝑘)) · 𝐵) + (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))))) |
90 | | oveq2 7159 |
. . . . . . . . . . 11
⊢
((2↑𝑘) =
if(𝑘 ∈
(bits‘𝐴),
(2↑𝑘), 0) →
(𝐵 · (2↑𝑘)) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) |
91 | 90 | fveqeq2d 6667 |
. . . . . . . . . 10
⊢
((2↑𝑘) =
if(𝑘 ∈
(bits‘𝐴),
(2↑𝑘), 0) →
((bits‘(𝐵 ·
(2↑𝑘))) = {𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
92 | | oveq2 7159 |
. . . . . . . . . . 11
⊢ (0 =
if(𝑘 ∈
(bits‘𝐴),
(2↑𝑘), 0) →
(𝐵 · 0) = (𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) |
93 | 92 | fveqeq2d 6667 |
. . . . . . . . . 10
⊢ (0 =
if(𝑘 ∈
(bits‘𝐴),
(2↑𝑘), 0) →
((bits‘(𝐵 ·
0)) = {𝑛 ∈
ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))} ↔ (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
94 | | bitsshft 15875 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ {𝑛 ∈
ℕ0 ∣ (𝑛 − 𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘)))) |
95 | 50, 94 | sylan 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0
∣ (𝑛 − 𝑘) ∈ (bits‘𝐵)} = (bits‘(𝐵 · (2↑𝑘)))) |
96 | | ibar 533 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (bits‘𝐴) → ((𝑛 − 𝑘) ∈ (bits‘𝐵) ↔ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵)))) |
97 | 96 | rabbidv 3393 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (bits‘𝐴) → {𝑛 ∈ ℕ0 ∣ (𝑛 − 𝑘) ∈ (bits‘𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) |
98 | 95, 97 | sylan9req 2815 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · (2↑𝑘))) = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) |
99 | 77 | adantr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → 𝐵 ∈ ℂ) |
100 | 99 | mul01d 10878 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → (𝐵 · 0) = 0) |
101 | 100 | fveq2d 6663 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) =
(bits‘0)) |
102 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → ¬ 𝑘 ∈ (bits‘𝐴)) |
103 | 102 | intnanrd 494 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → ¬ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))) |
104 | 103 | ralrimivw 3115 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → ∀𝑛 ∈ ℕ0
¬ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))) |
105 | | rabeq0 4281 |
. . . . . . . . . . . 12
⊢ ({𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))} = ∅ ↔ ∀𝑛 ∈ ℕ0
¬ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))) |
106 | 104, 105 | sylibr 237 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))} = ∅) |
107 | 55, 101, 106 | 3eqtr4a 2820 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (bits‘𝐴)) → (bits‘(𝐵 · 0)) = {𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) |
108 | 91, 93, 98, 107 | ifbothda 4459 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(bits‘(𝐵 ·
if(𝑘 ∈
(bits‘𝐴),
(2↑𝑘), 0))) = {𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) |
109 | 108 | oveq2d 7167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) sadd (bits‘(𝐵 · if(𝑘 ∈ (bits‘𝐴), (2↑𝑘), 0)))) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
110 | 82, 89, 109 | 3eqtr2d 2800 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(bits‘((𝐴 mod
(2↑(𝑘 + 1))) ·
𝐵)) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))})) |
111 | 62, 110 | eqeq12d 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((((bits‘𝐴) ∩
(0..^(𝑘 + 1))) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑(𝑘 + 1))) ·
𝐵)) ↔
((((bits‘𝐴) ∩
(0..^𝑘)) smul
(bits‘𝐵)) sadd {𝑛 ∈ ℕ0
∣ (𝑘 ∈
(bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}) = ((bits‘((𝐴 mod (2↑𝑘)) · 𝐵)) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (bits‘𝐴) ∧ (𝑛 − 𝑘) ∈ (bits‘𝐵))}))) |
112 | 57, 111 | syl5ibr 249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((((bits‘𝐴) ∩
(0..^𝑘)) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))) |
113 | 112 | expcom 418 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝜑 →
((((bits‘𝐴) ∩
(0..^𝑘)) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑𝑘)) · 𝐵)) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))) |
114 | 113 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝜑 →
(((bits‘𝐴) ∩
(0..^𝑘)) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑𝑘)) · 𝐵))) → (𝜑 → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵))))) |
115 | 21, 29, 37, 45, 56, 114 | nn0ind 12117 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 →
(((bits‘𝐴) ∩
(0..^𝑁)) smul
(bits‘𝐵)) =
(bits‘((𝐴 mod
(2↑𝑁)) · 𝐵)))) |
116 | 1, 115 | mpcom 38 |
1
⊢ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))) |