MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcfilu Structured version   Visualization version   GIF version

Theorem trcfilu 24303
Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
trcfilu ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem trcfilu
Dummy variables 𝑎 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 simp2l 1200 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (CauFilu𝑈))
3 iscfilu 24297 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
43biimpa 476 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
51, 2, 4syl2anc 584 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
65simpld 494 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (fBas‘𝑋))
7 simp3 1139 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐴𝑋)
8 simp2r 1201 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ¬ ∅ ∈ (𝐹t 𝐴))
9 trfbas2 23851 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
109biimpar 477 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
116, 7, 8, 10syl21anc 838 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
122ad5antr 734 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐹 ∈ (CauFilu𝑈))
131adantr 480 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋))
1413elfvexd 6945 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑋 ∈ V)
157adantr 480 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴𝑋)
1614, 15ssexd 5324 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴 ∈ V)
1716ad4antr 732 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐴 ∈ V)
18 simplr 769 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑎𝐹)
19 elrestr 17473 . . . . . . 7 ((𝐹 ∈ (CauFilu𝑈) ∧ 𝐴 ∈ V ∧ 𝑎𝐹) → (𝑎𝐴) ∈ (𝐹t 𝐴))
2012, 17, 18, 19syl3anc 1373 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎𝐴) ∈ (𝐹t 𝐴))
21 inxp 5842 . . . . . . 7 ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) = ((𝑎𝐴) × (𝑎𝐴))
22 simpr 484 . . . . . . . . 9 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
2322ssrind 4244 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
24 simpllr 776 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
2523, 24sseqtrrd 4021 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ 𝑤)
2621, 25eqsstrrid 4023 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤)
27 id 22 . . . . . . . . 9 (𝑏 = (𝑎𝐴) → 𝑏 = (𝑎𝐴))
2827sqxpeqd 5717 . . . . . . . 8 (𝑏 = (𝑎𝐴) → (𝑏 × 𝑏) = ((𝑎𝐴) × (𝑎𝐴)))
2928sseq1d 4015 . . . . . . 7 (𝑏 = (𝑎𝐴) → ((𝑏 × 𝑏) ⊆ 𝑤 ↔ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤))
3029rspcev 3622 . . . . . 6 (((𝑎𝐴) ∈ (𝐹t 𝐴) ∧ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3120, 26, 30syl2anc 584 . . . . 5 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
325simprd 495 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332r19.21bi 3251 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3433ad4ant13 751 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3531, 34r19.29a 3162 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3616, 16xpexd 7771 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V)
37 simpr 484 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈t (𝐴 × 𝐴)))
38 elrest 17472 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑤 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))))
3938biimpa 476 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4013, 36, 37, 39syl21anc 838 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4135, 40r19.29a 3162 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
4241ralrimiva 3146 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
43 trust 24238 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
441, 7, 43syl2anc 584 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
45 iscfilu 24297 . . 3 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4644, 45syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4711, 42, 46mpbir2and 713 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333   × cxp 5683  cfv 6561  (class class class)co 7431  t crest 17465  fBascfbas 21352  UnifOncust 24208  CauFiluccfilu 24295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-rest 17467  df-fbas 21361  df-ust 24209  df-cfilu 24296
This theorem is referenced by:  ucnextcn  24313
  Copyright terms: Public domain W3C validator