Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcfilu Structured version   Visualization version   GIF version

Theorem trcfilu 22821
 Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
trcfilu ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem trcfilu
Dummy variables 𝑎 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 simp2l 1193 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (CauFilu𝑈))
3 iscfilu 22815 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
43biimpa 477 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
51, 2, 4syl2anc 584 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
65simpld 495 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (fBas‘𝑋))
7 simp3 1132 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐴𝑋)
8 simp2r 1194 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ¬ ∅ ∈ (𝐹t 𝐴))
9 trfbas2 22370 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
109biimpar 478 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
116, 7, 8, 10syl21anc 835 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
122ad5antr 730 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐹 ∈ (CauFilu𝑈))
131adantr 481 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋))
1413elfvexd 6701 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑋 ∈ V)
157adantr 481 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴𝑋)
1614, 15ssexd 5225 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴 ∈ V)
1716ad4antr 728 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐴 ∈ V)
18 simplr 765 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑎𝐹)
19 elrestr 16692 . . . . . . 7 ((𝐹 ∈ (CauFilu𝑈) ∧ 𝐴 ∈ V ∧ 𝑎𝐹) → (𝑎𝐴) ∈ (𝐹t 𝐴))
2012, 17, 18, 19syl3anc 1365 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎𝐴) ∈ (𝐹t 𝐴))
21 inxp 5702 . . . . . . 7 ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) = ((𝑎𝐴) × (𝑎𝐴))
22 simpr 485 . . . . . . . . 9 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
2322ssrind 4216 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
24 simpllr 772 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
2523, 24sseqtrrd 4012 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ 𝑤)
2621, 25eqsstrrid 4020 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤)
27 id 22 . . . . . . . . 9 (𝑏 = (𝑎𝐴) → 𝑏 = (𝑎𝐴))
2827sqxpeqd 5586 . . . . . . . 8 (𝑏 = (𝑎𝐴) → (𝑏 × 𝑏) = ((𝑎𝐴) × (𝑎𝐴)))
2928sseq1d 4002 . . . . . . 7 (𝑏 = (𝑎𝐴) → ((𝑏 × 𝑏) ⊆ 𝑤 ↔ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤))
3029rspcev 3627 . . . . . 6 (((𝑎𝐴) ∈ (𝐹t 𝐴) ∧ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3120, 26, 30syl2anc 584 . . . . 5 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
325simprd 496 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332r19.21bi 3213 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3433ad4ant13 747 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3531, 34r19.29a 3294 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3616, 16xpexd 7463 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V)
37 simpr 485 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈t (𝐴 × 𝐴)))
38 elrest 16691 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑤 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))))
3938biimpa 477 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4013, 36, 37, 39syl21anc 835 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4135, 40r19.29a 3294 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
4241ralrimiva 3187 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
43 trust 22756 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
441, 7, 43syl2anc 584 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
45 iscfilu 22815 . . 3 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4644, 45syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4711, 42, 46mpbir2and 709 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3143  ∃wrex 3144  Vcvv 3500   ∩ cin 3939   ⊆ wss 3940  ∅c0 4295   × cxp 5552  ‘cfv 6352  (class class class)co 7148   ↾t crest 16684  fBascfbas 20452  UnifOncust 22726  CauFiluccfilu 22813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-rest 16686  df-fbas 20461  df-ust 22727  df-cfilu 22814 This theorem is referenced by:  ucnextcn  22831
 Copyright terms: Public domain W3C validator