![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressuss | Structured version Visualization version GIF version |
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
Ref | Expression |
---|---|
ressuss | ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2731 | . . . . 5 ⊢ (UnifSet‘𝑊) = (UnifSet‘𝑊) | |
3 | 1, 2 | ussval 23985 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊) |
4 | 3 | oveq1i 7422 | . . 3 ⊢ (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) |
5 | fvex 6904 | . . . 4 ⊢ (UnifSet‘𝑊) ∈ V | |
6 | fvex 6904 | . . . . 5 ⊢ (Base‘𝑊) ∈ V | |
7 | 6, 6 | xpex 7743 | . . . 4 ⊢ ((Base‘𝑊) × (Base‘𝑊)) ∈ V |
8 | sqxpexg 7745 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
9 | restco 22889 | . . . 4 ⊢ (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) | |
10 | 5, 7, 8, 9 | mp3an12i 1464 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
11 | 4, 10 | eqtr3id 2785 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
12 | inxp 5832 | . . . . 5 ⊢ (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) | |
13 | incom 4201 | . . . . . . 7 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
14 | eqid 2731 | . . . . . . . 8 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
15 | 14, 1 | ressbas 17184 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
16 | 13, 15 | eqtr3id 2785 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊 ↾s 𝐴))) |
17 | 16 | sqxpeqd 5708 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
18 | 12, 17 | eqtrid 2783 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
19 | 18 | oveq2d 7428 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
20 | 14, 2 | ressunif 17352 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊 ↾s 𝐴))) |
21 | 20 | oveq1d 7427 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
22 | eqid 2731 | . . . . 5 ⊢ (Base‘(𝑊 ↾s 𝐴)) = (Base‘(𝑊 ↾s 𝐴)) | |
23 | eqid 2731 | . . . . 5 ⊢ (UnifSet‘(𝑊 ↾s 𝐴)) = (UnifSet‘(𝑊 ↾s 𝐴)) | |
24 | 22, 23 | ussval 23985 | . . . 4 ⊢ ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴)) |
25 | 24 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
26 | 19, 21, 25 | 3eqtrd 2775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
27 | 11, 26 | eqtr2d 2772 | 1 ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 × cxp 5674 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 ↾s cress 17178 UnifSetcunif 17212 ↾t crest 17371 UnifStcuss 23979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-unif 17225 df-rest 17373 df-uss 23982 |
This theorem is referenced by: ressust 23989 ressusp 23990 ucnextcn 24030 reust 25130 qqhucn 33271 |
Copyright terms: Public domain | W3C validator |