MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   GIF version

Theorem ressuss 22475
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2778 . . . . 5 (UnifSet‘𝑊) = (UnifSet‘𝑊)
31, 2ussval 22471 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊)
43oveq1i 6932 . . 3 (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))
5 fvex 6459 . . . . 5 (UnifSet‘𝑊) ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) ∈ V)
7 fvex 6459 . . . . . 6 (Base‘𝑊) ∈ V
87, 7xpex 7240 . . . . 5 ((Base‘𝑊) × (Base‘𝑊)) ∈ V
98a1i 11 . . . 4 (𝐴𝑉 → ((Base‘𝑊) × (Base‘𝑊)) ∈ V)
10 sqxpexg 7241 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
11 restco 21376 . . . 4 (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
126, 9, 10, 11syl3anc 1439 . . 3 (𝐴𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
134, 12syl5eqr 2828 . 2 (𝐴𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
14 inxp 5500 . . . . 5 (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴))
15 incom 4028 . . . . . . 7 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
16 eqid 2778 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1716, 1ressbas 16326 . . . . . . 7 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1815, 17syl5eqr 2828 . . . . . 6 (𝐴𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊s 𝐴)))
1918sqxpeqd 5387 . . . . 5 (𝐴𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
2014, 19syl5eq 2826 . . . 4 (𝐴𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
2120oveq2d 6938 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
2216, 2ressunif 22474 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊s 𝐴)))
2322oveq1d 6937 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
24 eqid 2778 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
25 eqid 2778 . . . . 5 (UnifSet‘(𝑊s 𝐴)) = (UnifSet‘(𝑊s 𝐴))
2624, 25ussval 22471 . . . 4 ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴))
2726a1i 11 . . 3 (𝐴𝑉 → ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴)))
2821, 23, 273eqtrd 2818 . 2 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊s 𝐴)))
2913, 28eqtr2d 2815 1 (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398  cin 3791   × cxp 5353  cfv 6135  (class class class)co 6922  Basecbs 16255  s cress 16256  UnifSetcunif 16348  t crest 16467  UnifStcuss 22465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-unif 16361  df-rest 16469  df-uss 22468
This theorem is referenced by:  ressust  22476  ressusp  22477  ucnextcn  22516  reust  23587  qqhucn  30634
  Copyright terms: Public domain W3C validator