MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   GIF version

Theorem ressuss 24286
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2734 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2734 . . . . 5 (UnifSet‘𝑊) = (UnifSet‘𝑊)
31, 2ussval 24283 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊)
43oveq1i 7440 . . 3 (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))
5 fvex 6919 . . . 4 (UnifSet‘𝑊) ∈ V
6 fvex 6919 . . . . 5 (Base‘𝑊) ∈ V
76, 6xpex 7771 . . . 4 ((Base‘𝑊) × (Base‘𝑊)) ∈ V
8 sqxpexg 7773 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
9 restco 23187 . . . 4 (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
105, 7, 8, 9mp3an12i 1464 . . 3 (𝐴𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
114, 10eqtr3id 2788 . 2 (𝐴𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
12 inxp 5844 . . . . 5 (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴))
13 incom 4216 . . . . . . 7 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
14 eqid 2734 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1514, 1ressbas 17279 . . . . . . 7 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1613, 15eqtr3id 2788 . . . . . 6 (𝐴𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊s 𝐴)))
1716sqxpeqd 5720 . . . . 5 (𝐴𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1812, 17eqtrid 2786 . . . 4 (𝐴𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1918oveq2d 7446 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
2014, 2ressunif 17447 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊s 𝐴)))
2120oveq1d 7445 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
22 eqid 2734 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
23 eqid 2734 . . . . 5 (UnifSet‘(𝑊s 𝐴)) = (UnifSet‘(𝑊s 𝐴))
2422, 23ussval 24283 . . . 4 ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴))
2524a1i 11 . . 3 (𝐴𝑉 → ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴)))
2619, 21, 253eqtrd 2778 . 2 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊s 𝐴)))
2711, 26eqtr2d 2775 1 (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961   × cxp 5686  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  UnifSetcunif 17307  t crest 17466  UnifStcuss 24277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-unif 17320  df-rest 17468  df-uss 24280
This theorem is referenced by:  ressust  24287  ressusp  24288  ucnextcn  24328  reust  25428  qqhucn  33954
  Copyright terms: Public domain W3C validator