Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressuss | Structured version Visualization version GIF version |
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
Ref | Expression |
---|---|
ressuss | ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2736 | . . . . 5 ⊢ (UnifSet‘𝑊) = (UnifSet‘𝑊) | |
3 | 1, 2 | ussval 23460 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊) |
4 | 3 | oveq1i 7317 | . . 3 ⊢ (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) |
5 | fvex 6817 | . . . 4 ⊢ (UnifSet‘𝑊) ∈ V | |
6 | fvex 6817 | . . . . 5 ⊢ (Base‘𝑊) ∈ V | |
7 | 6, 6 | xpex 7635 | . . . 4 ⊢ ((Base‘𝑊) × (Base‘𝑊)) ∈ V |
8 | sqxpexg 7637 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
9 | restco 22364 | . . . 4 ⊢ (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) | |
10 | 5, 7, 8, 9 | mp3an12i 1465 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
11 | 4, 10 | eqtr3id 2790 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
12 | inxp 5754 | . . . . 5 ⊢ (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) | |
13 | incom 4141 | . . . . . . 7 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
14 | eqid 2736 | . . . . . . . 8 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
15 | 14, 1 | ressbas 16996 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
16 | 13, 15 | eqtr3id 2790 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊 ↾s 𝐴))) |
17 | 16 | sqxpeqd 5632 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
18 | 12, 17 | eqtrid 2788 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
19 | 18 | oveq2d 7323 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
20 | 14, 2 | ressunif 17161 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊 ↾s 𝐴))) |
21 | 20 | oveq1d 7322 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
22 | eqid 2736 | . . . . 5 ⊢ (Base‘(𝑊 ↾s 𝐴)) = (Base‘(𝑊 ↾s 𝐴)) | |
23 | eqid 2736 | . . . . 5 ⊢ (UnifSet‘(𝑊 ↾s 𝐴)) = (UnifSet‘(𝑊 ↾s 𝐴)) | |
24 | 22, 23 | ussval 23460 | . . . 4 ⊢ ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴)) |
25 | 24 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
26 | 19, 21, 25 | 3eqtrd 2780 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
27 | 11, 26 | eqtr2d 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 × cxp 5598 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 ↾s cress 16990 UnifSetcunif 17021 ↾t crest 17180 UnifStcuss 23454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-unif 17034 df-rest 17182 df-uss 23457 |
This theorem is referenced by: ressust 23464 ressusp 23465 ucnextcn 23505 reust 24594 qqhucn 31991 |
Copyright terms: Public domain | W3C validator |