MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   GIF version

Theorem ressuss 24177
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2731 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . . . 5 (UnifSet‘𝑊) = (UnifSet‘𝑊)
31, 2ussval 24174 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊)
43oveq1i 7356 . . 3 (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))
5 fvex 6835 . . . 4 (UnifSet‘𝑊) ∈ V
6 fvex 6835 . . . . 5 (Base‘𝑊) ∈ V
76, 6xpex 7686 . . . 4 ((Base‘𝑊) × (Base‘𝑊)) ∈ V
8 sqxpexg 7688 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
9 restco 23079 . . . 4 (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
105, 7, 8, 9mp3an12i 1467 . . 3 (𝐴𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
114, 10eqtr3id 2780 . 2 (𝐴𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
12 inxp 5770 . . . . 5 (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴))
13 incom 4156 . . . . . . 7 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
14 eqid 2731 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1514, 1ressbas 17147 . . . . . . 7 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1613, 15eqtr3id 2780 . . . . . 6 (𝐴𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊s 𝐴)))
1716sqxpeqd 5646 . . . . 5 (𝐴𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1812, 17eqtrid 2778 . . . 4 (𝐴𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1918oveq2d 7362 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
2014, 2ressunif 17306 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊s 𝐴)))
2120oveq1d 7361 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
22 eqid 2731 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
23 eqid 2731 . . . . 5 (UnifSet‘(𝑊s 𝐴)) = (UnifSet‘(𝑊s 𝐴))
2422, 23ussval 24174 . . . 4 ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴))
2524a1i 11 . . 3 (𝐴𝑉 → ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴)))
2619, 21, 253eqtrd 2770 . 2 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊s 𝐴)))
2711, 26eqtr2d 2767 1 (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896   × cxp 5612  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  UnifSetcunif 17171  t crest 17324  UnifStcuss 24168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-unif 17184  df-rest 17326  df-uss 24171
This theorem is referenced by:  ressust  24178  ressusp  24179  ucnextcn  24218  reust  25308  qqhucn  34005
  Copyright terms: Public domain W3C validator