MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   GIF version

Theorem ressuss 22486
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2778 . . . . 5 (UnifSet‘𝑊) = (UnifSet‘𝑊)
31, 2ussval 22482 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊)
43oveq1i 6934 . . 3 (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))
5 fvex 6461 . . . 4 (UnifSet‘𝑊) ∈ V
6 fvex 6461 . . . . 5 (Base‘𝑊) ∈ V
76, 6xpex 7242 . . . 4 ((Base‘𝑊) × (Base‘𝑊)) ∈ V
8 sqxpexg 7243 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
9 restco 21387 . . . 4 (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
105, 7, 8, 9mp3an12i 1538 . . 3 (𝐴𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
114, 10syl5eqr 2828 . 2 (𝐴𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
12 inxp 5502 . . . . 5 (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴))
13 incom 4028 . . . . . . 7 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
14 eqid 2778 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1514, 1ressbas 16337 . . . . . . 7 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1613, 15syl5eqr 2828 . . . . . 6 (𝐴𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊s 𝐴)))
1716sqxpeqd 5389 . . . . 5 (𝐴𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1812, 17syl5eq 2826 . . . 4 (𝐴𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1918oveq2d 6940 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
2014, 2ressunif 22485 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊s 𝐴)))
2120oveq1d 6939 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
22 eqid 2778 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
23 eqid 2778 . . . . 5 (UnifSet‘(𝑊s 𝐴)) = (UnifSet‘(𝑊s 𝐴))
2422, 23ussval 22482 . . . 4 ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴))
2524a1i 11 . . 3 (𝐴𝑉 → ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴)))
2619, 21, 253eqtrd 2818 . 2 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊s 𝐴)))
2711, 26eqtr2d 2815 1 (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398  cin 3791   × cxp 5355  cfv 6137  (class class class)co 6924  Basecbs 16266  s cress 16267  UnifSetcunif 16359  t crest 16478  UnifStcuss 22476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-unif 16372  df-rest 16480  df-uss 22479
This theorem is referenced by:  ressust  22487  ressusp  22488  ucnextcn  22527  reust  23598  qqhucn  30642
  Copyright terms: Public domain W3C validator