MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuss Structured version   Visualization version   GIF version

Theorem ressuss 24126
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
ressuss (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))

Proof of Theorem ressuss
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . . 5 (UnifSet‘𝑊) = (UnifSet‘𝑊)
31, 2ussval 24123 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊)
43oveq1i 7379 . . 3 (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))
5 fvex 6853 . . . 4 (UnifSet‘𝑊) ∈ V
6 fvex 6853 . . . . 5 (Base‘𝑊) ∈ V
76, 6xpex 7709 . . . 4 ((Base‘𝑊) × (Base‘𝑊)) ∈ V
8 sqxpexg 7711 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
9 restco 23027 . . . 4 (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
105, 7, 8, 9mp3an12i 1467 . . 3 (𝐴𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
114, 10eqtr3id 2778 . 2 (𝐴𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))))
12 inxp 5785 . . . . 5 (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴))
13 incom 4168 . . . . . . 7 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
14 eqid 2729 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1514, 1ressbas 17182 . . . . . . 7 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1613, 15eqtr3id 2778 . . . . . 6 (𝐴𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊s 𝐴)))
1716sqxpeqd 5663 . . . . 5 (𝐴𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1812, 17eqtrid 2776 . . . 4 (𝐴𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴))))
1918oveq2d 7385 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
2014, 2ressunif 17341 . . . 4 (𝐴𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊s 𝐴)))
2120oveq1d 7384 . . 3 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))))
22 eqid 2729 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
23 eqid 2729 . . . . 5 (UnifSet‘(𝑊s 𝐴)) = (UnifSet‘(𝑊s 𝐴))
2422, 23ussval 24123 . . . 4 ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴))
2524a1i 11 . . 3 (𝐴𝑉 → ((UnifSet‘(𝑊s 𝐴)) ↾t ((Base‘(𝑊s 𝐴)) × (Base‘(𝑊s 𝐴)))) = (UnifSt‘(𝑊s 𝐴)))
2619, 21, 253eqtrd 2768 . 2 (𝐴𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊s 𝐴)))
2711, 26eqtr2d 2765 1 (𝐴𝑉 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910   × cxp 5629  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  UnifSetcunif 17206  t crest 17359  UnifStcuss 24117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-unif 17219  df-rest 17361  df-uss 24120
This theorem is referenced by:  ressust  24127  ressusp  24128  ucnextcn  24167  reust  25257  qqhucn  33955
  Copyright terms: Public domain W3C validator