| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxex | Structured version Visualization version GIF version | ||
| Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxex | ⊢ 𝑂 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrex 12888 | . . . 4 ⊢ ℝ* ∈ V | |
| 2 | 1, 1 | xpex 7689 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
| 3 | 1 | pwex 5319 | . . 3 ⊢ 𝒫 ℝ* ∈ V |
| 4 | 2, 3 | xpex 7689 | . 2 ⊢ ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V |
| 5 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 6 | 5 | ixxf 13258 | . . 3 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 7 | fssxp 6679 | . . 3 ⊢ (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* → 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*) |
| 9 | 4, 8 | ssexi 5261 | 1 ⊢ 𝑂 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 class class class wbr 5092 × cxp 5617 ⟶wf 6478 ∈ cmpo 7351 ℝ*cxr 11148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-xr 11153 |
| This theorem is referenced by: iooex 13271 isbasisrelowl 37342 relowlpssretop 37348 |
| Copyright terms: Public domain | W3C validator |