MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxex Structured version   Visualization version   GIF version

Theorem ixxex 13395
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxex 𝑂 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 13027 . . . 4 * ∈ V
21, 1xpex 7772 . . 3 (ℝ* × ℝ*) ∈ V
31pwex 5386 . . 3 𝒫 ℝ* ∈ V
42, 3xpex 7772 . 2 ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V
5 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65ixxf 13394 . . 3 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 fssxp 6764 . . 3 (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*))
86, 7ax-mp 5 . 2 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)
94, 8ssexi 5328 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  wss 3963  𝒫 cpw 4605   class class class wbr 5148   × cxp 5687  wf 6559  cmpo 7433  *cxr 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-xr 11297
This theorem is referenced by:  iooex  13407  isbasisrelowl  37341  relowlpssretop  37347
  Copyright terms: Public domain W3C validator