Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixxex | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxex | ⊢ 𝑂 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrex 12656 | . . . 4 ⊢ ℝ* ∈ V | |
2 | 1, 1 | xpex 7581 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
3 | 1 | pwex 5298 | . . 3 ⊢ 𝒫 ℝ* ∈ V |
4 | 2, 3 | xpex 7581 | . 2 ⊢ ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V |
5 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
6 | 5 | ixxf 13018 | . . 3 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
7 | fssxp 6612 | . . 3 ⊢ (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* → 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*) |
9 | 4, 8 | ssexi 5241 | 1 ⊢ 𝑂 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ∈ cmpo 7257 ℝ*cxr 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-xr 10944 |
This theorem is referenced by: iooex 13031 isbasisrelowl 35456 relowlpssretop 35462 |
Copyright terms: Public domain | W3C validator |