MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxex Structured version   Visualization version   GIF version

Theorem ixxex 13331
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxex 𝑂 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 12967 . . . 4 * ∈ V
21, 1xpex 7735 . . 3 (ℝ* × ℝ*) ∈ V
31pwex 5377 . . 3 𝒫 ℝ* ∈ V
42, 3xpex 7735 . 2 ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V
5 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65ixxf 13330 . . 3 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 fssxp 6742 . . 3 (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*))
86, 7ax-mp 5 . 2 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)
94, 8ssexi 5321 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  wss 3947  𝒫 cpw 4601   class class class wbr 5147   × cxp 5673  wf 6536  cmpo 7406  *cxr 11243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-xr 11248
This theorem is referenced by:  iooex  13343  isbasisrelowl  36177  relowlpssretop  36183
  Copyright terms: Public domain W3C validator