![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxex | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxex | ⊢ 𝑂 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrex 12967 | . . . 4 ⊢ ℝ* ∈ V | |
2 | 1, 1 | xpex 7735 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
3 | 1 | pwex 5377 | . . 3 ⊢ 𝒫 ℝ* ∈ V |
4 | 2, 3 | xpex 7735 | . 2 ⊢ ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V |
5 | ixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
6 | 5 | ixxf 13330 | . . 3 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
7 | fssxp 6742 | . . 3 ⊢ (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* → 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*) |
9 | 4, 8 | ssexi 5321 | 1 ⊢ 𝑂 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 × cxp 5673 ⟶wf 6536 ∈ cmpo 7406 ℝ*cxr 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-oprab 7408 df-mpo 7409 df-1st 7970 df-2nd 7971 df-xr 11248 |
This theorem is referenced by: iooex 13343 isbasisrelowl 36177 relowlpssretop 36183 |
Copyright terms: Public domain | W3C validator |