![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgqioo2 | Structured version Visualization version GIF version |
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
tgqioo2.1 | β’ π½ = (topGenβran (,)) |
tgqioo2.2 | β’ (π β π΄ β π½) |
Ref | Expression |
---|---|
tgqioo2 | β’ (π β βπ(π β ((,) β (β Γ β)) β§ π΄ = βͺ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgqioo2.2 | . . 3 β’ (π β π΄ β π½) | |
2 | tgqioo2.1 | . . . . 5 β’ π½ = (topGenβran (,)) | |
3 | eqid 2731 | . . . . . 6 β’ (topGenβ((,) β (β Γ β))) = (topGenβ((,) β (β Γ β))) | |
4 | 3 | tgqioo 24637 | . . . . 5 β’ (topGenβran (,)) = (topGenβ((,) β (β Γ β))) |
5 | 2, 4, 3 | 3eqtri 2763 | . . . 4 β’ π½ = (topGenβ((,) β (β Γ β))) |
6 | 5 | a1i 11 | . . 3 β’ (π β π½ = (topGenβ((,) β (β Γ β)))) |
7 | 1, 6 | eleqtrd 2834 | . 2 β’ (π β π΄ β (topGenβ((,) β (β Γ β)))) |
8 | iooex 13354 | . . . 4 β’ (,) β V | |
9 | imaexg 7910 | . . . 4 β’ ((,) β V β ((,) β (β Γ β)) β V) | |
10 | 8, 9 | ax-mp 5 | . . 3 β’ ((,) β (β Γ β)) β V |
11 | eltg3 22786 | . . 3 β’ (((,) β (β Γ β)) β V β (π΄ β (topGenβ((,) β (β Γ β))) β βπ(π β ((,) β (β Γ β)) β§ π΄ = βͺ π))) | |
12 | 10, 11 | ax-mp 5 | . 2 β’ (π΄ β (topGenβ((,) β (β Γ β))) β βπ(π β ((,) β (β Γ β)) β§ π΄ = βͺ π)) |
13 | 7, 12 | sylib 217 | 1 β’ (π β βπ(π β ((,) β (β Γ β)) β§ π΄ = βͺ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 Vcvv 3473 β wss 3948 βͺ cuni 4908 Γ cxp 5674 ran crn 5677 β cima 5679 βcfv 6543 βcq 12939 (,)cioo 13331 topGenctg 17390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-ioo 13335 df-topgen 17396 df-bases 22770 |
This theorem is referenced by: smfpimbor1lem1 45976 |
Copyright terms: Public domain | W3C validator |