![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgqioo2 | Structured version Visualization version GIF version |
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
tgqioo2.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
tgqioo2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Ref | Expression |
---|---|
tgqioo2 | ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgqioo2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
2 | tgqioo2.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | eqid 2740 | . . . . . 6 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
4 | 3 | tgqioo 24841 | . . . . 5 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
5 | 2, 4, 3 | 3eqtri 2772 | . . . 4 ⊢ 𝐽 = (topGen‘((,) “ (ℚ × ℚ))) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))) |
7 | 1, 6 | eleqtrd 2846 | . 2 ⊢ (𝜑 → 𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ)))) |
8 | iooex 13430 | . . . 4 ⊢ (,) ∈ V | |
9 | imaexg 7953 | . . . 4 ⊢ ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ V |
11 | eltg3 22990 | . . 3 ⊢ (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
13 | 7, 12 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 × cxp 5698 ran crn 5701 “ cima 5703 ‘cfv 6573 ℚcq 13013 (,)cioo 13407 topGenctg 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-topgen 17503 df-bases 22974 |
This theorem is referenced by: smfpimbor1lem1 46719 |
Copyright terms: Public domain | W3C validator |