Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgqioo2 | Structured version Visualization version GIF version |
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
tgqioo2.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
tgqioo2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Ref | Expression |
---|---|
tgqioo2 | ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgqioo2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
2 | tgqioo2.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | eqid 2737 | . . . . . 6 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
4 | 3 | tgqioo 24068 | . . . . 5 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
5 | 2, 4, 3 | 3eqtri 2769 | . . . 4 ⊢ 𝐽 = (topGen‘((,) “ (ℚ × ℚ))) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))) |
7 | 1, 6 | eleqtrd 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ)))) |
8 | iooex 13207 | . . . 4 ⊢ (,) ∈ V | |
9 | imaexg 7834 | . . . 4 ⊢ ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ V |
11 | eltg3 22217 | . . 3 ⊢ (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
13 | 7, 12 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3901 ∪ cuni 4856 × cxp 5622 ran crn 5625 “ cima 5627 ‘cfv 6483 ℚcq 12793 (,)cioo 13184 topGenctg 17245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-q 12794 df-ioo 13188 df-topgen 17251 df-bases 22201 |
This theorem is referenced by: smfpimbor1lem1 44725 |
Copyright terms: Public domain | W3C validator |