Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgqioo2 Structured version   Visualization version   GIF version

Theorem tgqioo2 45529
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
tgqioo2.1 𝐽 = (topGen‘ran (,))
tgqioo2.2 (𝜑𝐴𝐽)
Assertion
Ref Expression
tgqioo2 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
Distinct variable group:   𝐴,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝐽(𝑞)

Proof of Theorem tgqioo2
StepHypRef Expression
1 tgqioo2.2 . . 3 (𝜑𝐴𝐽)
2 tgqioo2.1 . . . . 5 𝐽 = (topGen‘ran (,))
3 eqid 2729 . . . . . 6 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ)))
43tgqioo 24704 . . . . 5 (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ)))
52, 4, 33eqtri 2756 . . . 4 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))
65a1i 11 . . 3 (𝜑𝐽 = (topGen‘((,) “ (ℚ × ℚ))))
71, 6eleqtrd 2830 . 2 (𝜑𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))))
8 iooex 13289 . . . 4 (,) ∈ V
9 imaexg 7853 . . . 4 ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V)
108, 9ax-mp 5 . . 3 ((,) “ (ℚ × ℚ)) ∈ V
11 eltg3 22865 . . 3 (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞)))
1210, 11ax-mp 5 . 2 (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
137, 12sylib 218 1 (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  wss 3905   cuni 4861   × cxp 5621  ran crn 5624  cima 5626  cfv 6486  cq 12867  (,)cioo 13266  topGenctg 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-ioo 13270  df-topgen 17365  df-bases 22849
This theorem is referenced by:  smfpimbor1lem1  46780
  Copyright terms: Public domain W3C validator