![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgqioo2 | Structured version Visualization version GIF version |
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
tgqioo2.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
tgqioo2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Ref | Expression |
---|---|
tgqioo2 | ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgqioo2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
2 | tgqioo2.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | eqid 2778 | . . . . . 6 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
4 | 3 | tgqioo 23015 | . . . . 5 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
5 | 2, 4, 3 | 3eqtri 2806 | . . . 4 ⊢ 𝐽 = (topGen‘((,) “ (ℚ × ℚ))) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))) |
7 | 1, 6 | eleqtrd 2861 | . 2 ⊢ (𝜑 → 𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ)))) |
8 | iooex 12514 | . . . 4 ⊢ (,) ∈ V | |
9 | imaexg 7384 | . . . 4 ⊢ ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ V |
11 | eltg3 21178 | . . 3 ⊢ (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
13 | 7, 12 | sylib 210 | 1 ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 ∪ cuni 4673 × cxp 5355 ran crn 5358 “ cima 5360 ‘cfv 6137 ℚcq 12099 (,)cioo 12491 topGenctg 16488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 df-q 12100 df-ioo 12495 df-topgen 16494 df-bases 21162 |
This theorem is referenced by: smfpimbor1lem1 41942 |
Copyright terms: Public domain | W3C validator |