MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   GIF version

Theorem lmcau 23439
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lmcau (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))

Proof of Theorem lmcau
Dummy variables 𝑥 𝑦 𝑓 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21methaus 22653 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
3 lmfun 21514 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
4 funfvbrb 6556 . . . 4 (Fun (⇝𝑡𝐽) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
52, 3, 43syl 18 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
6 id 22 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
71, 6lmmbr 23384 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))))
87biimpa 469 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦)))
98simp1d 1173 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (𝑋pm ℂ))
10 simprr 790 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
11 simplll 792 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
128simp2d 1174 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
1312ad2antrr 718 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
14 rpre 12082 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1514ad2antlr 719 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ)
16 uzid 11945 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1716ad2antrl 720 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ𝑗))
18 fvres 6430 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑗) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
1917, 18syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
2010, 17ffvelrnd 6586 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2119, 20eqeltrrd 2879 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
22 blhalf 22538 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2311, 13, 15, 21, 22syl22anc 868 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2410, 23fssd 6270 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
25 rphalfcl 12103 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
268simp3d 1175 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))
27 oveq2 6886 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 2) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) = (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2827feq3d 6243 . . . . . . . . . . . 12 (𝑦 = (𝑥 / 2) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2928rexbidv 3233 . . . . . . . . . . 11 (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3029rspcv 3493 . . . . . . . . . 10 ((𝑥 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3125, 26, 30syl2im 40 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3231impcom 397 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
33 uzf 11933 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
34 ffn 6256 . . . . . . . . 9 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
35 reseq2 5595 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → (𝑓𝑢) = (𝑓 ↾ (ℤ𝑗)))
36 id 22 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → 𝑢 = (ℤ𝑗))
3735, 36feq12d 6244 . . . . . . . . . 10 (𝑢 = (ℤ𝑗) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3837rexrn 6587 . . . . . . . . 9 (ℤ Fn ℤ → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3933, 34, 38mp2b 10 . . . . . . . 8 (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4032, 39sylib 210 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4124, 40reximddv 3198 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
4241ralrimiva 3147 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
43 iscau 23402 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
4443adantr 473 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
459, 42, 44mpbir2and 705 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷))
4645ex 402 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷)))
475, 46sylbid 232 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) → 𝑓 ∈ (Cau‘𝐷)))
4847ssrdv 3804 1 (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  wss 3769  𝒫 cpw 4349   class class class wbr 4843  dom cdm 5312  ran crn 5313  cres 5314  Fun wfun 6095   Fn wfn 6096  wf 6097  cfv 6101  (class class class)co 6878  pm cpm 8096  cc 10222  cr 10223   / cdiv 10976  2c2 11368  cz 11666  cuz 11930  +crp 12074  ∞Metcxmet 20053  ballcbl 20055  MetOpencmopn 20058  𝑡clm 21359  Hauscha 21441  Cauccau 23379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-topgen 16419  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-top 21027  df-topon 21044  df-bases 21079  df-lm 21362  df-haus 21448  df-cau 23382
This theorem is referenced by:  hlimcaui  28618
  Copyright terms: Public domain W3C validator