MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   GIF version

Theorem lmcau 25233
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lmcau (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))

Proof of Theorem lmcau
Dummy variables 𝑥 𝑦 𝑓 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21methaus 24428 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
3 lmfun 23289 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
4 funfvbrb 6979 . . . 4 (Fun (⇝𝑡𝐽) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
52, 3, 43syl 18 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
6 id 22 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
71, 6lmmbr 25178 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))))
87biimpa 476 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦)))
98simp1d 1142 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (𝑋pm ℂ))
10 simprr 772 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
11 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
128simp2d 1143 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
1312ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
14 rpre 12891 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1514ad2antlr 727 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ)
16 uzid 12739 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ𝑗))
1817fvresd 6837 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
1910, 17ffvelcdmd 7013 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2018, 19eqeltrrd 2830 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
21 blhalf 24313 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2211, 13, 15, 20, 21syl22anc 838 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2310, 22fssd 6664 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
24 rphalfcl 12911 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
258simp3d 1144 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))
26 oveq2 7349 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 2) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) = (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2726feq3d 6632 . . . . . . . . . . . 12 (𝑦 = (𝑥 / 2) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2827rexbidv 3154 . . . . . . . . . . 11 (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2928rspcv 3571 . . . . . . . . . 10 ((𝑥 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3024, 25, 29syl2im 40 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3130impcom 407 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
32 uzf 12727 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
33 ffn 6647 . . . . . . . . 9 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
34 reseq2 5920 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → (𝑓𝑢) = (𝑓 ↾ (ℤ𝑗)))
35 id 22 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → 𝑢 = (ℤ𝑗))
3634, 35feq12d 6635 . . . . . . . . . 10 (𝑢 = (ℤ𝑗) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3736rexrn 7015 . . . . . . . . 9 (ℤ Fn ℤ → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3832, 33, 37mp2b 10 . . . . . . . 8 (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
3931, 38sylib 218 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4023, 39reximddv 3146 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
4140ralrimiva 3122 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
42 iscau 25196 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
4342adantr 480 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
449, 41, 43mpbir2and 713 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷))
4544ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷)))
465, 45sylbid 240 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) → 𝑓 ∈ (Cau‘𝐷)))
4746ssrdv 3938 1 (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wrex 3054  wss 3900  𝒫 cpw 4548   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  pm cpm 8746  cc 10996  cr 10997   / cdiv 11766  2c2 12172  cz 12460  cuz 12724  +crp 12882  ∞Metcxmet 21269  ballcbl 21271  MetOpencmopn 21274  𝑡clm 23134  Hauscha 23216  Cauccau 25173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-icc 13244  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-lm 23137  df-haus 23223  df-cau 25176
This theorem is referenced by:  hlimcaui  31206
  Copyright terms: Public domain W3C validator