| Step | Hyp | Ref
| Expression |
| 1 | | lmcau.1 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
| 2 | 1 | methaus 24533 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
| 3 | | lmfun 23389 |
. . . 4
⊢ (𝐽 ∈ Haus → Fun
(⇝𝑡‘𝐽)) |
| 4 | | funfvbrb 7071 |
. . . 4
⊢ (Fun
(⇝𝑡‘𝐽) → (𝑓 ∈ dom
(⇝𝑡‘𝐽) ↔ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓))) |
| 5 | 2, 3, 4 | 3syl 18 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom
(⇝𝑡‘𝐽) ↔ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓))) |
| 6 | | id 22 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | 1, 6 | lmmbr 25292 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
((⇝𝑡‘𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+ ∃𝑢 ∈ ran
ℤ≥(𝑓
↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦)))) |
| 8 | 7 | biimpa 476 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
((⇝𝑡‘𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+ ∃𝑢 ∈ ran
ℤ≥(𝑓
↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦))) |
| 9 | 8 | simp1d 1143 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → 𝑓 ∈ (𝑋 ↑pm
ℂ)) |
| 10 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 11 | | simplll 775 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | 8 | simp2d 1144 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) →
((⇝𝑡‘𝐽)‘𝑓) ∈ 𝑋) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) →
((⇝𝑡‘𝐽)‘𝑓) ∈ 𝑋) |
| 14 | | rpre 13043 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 15 | 14 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ) |
| 16 | | uzid 12893 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 17 | 16 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 18 | 17 | fvresd 6926 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ≥‘𝑗))‘𝑗) = (𝑓‘𝑗)) |
| 19 | 10, 17 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ≥‘𝑗))‘𝑗) ∈ (((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 20 | 18, 19 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓‘𝑗) ∈ (((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 21 | | blhalf 24415 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧
((⇝𝑡‘𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓‘𝑗) ∈
(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) →
(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓‘𝑗)(ball‘𝐷)𝑥)) |
| 22 | 11, 13, 15, 20, 21 | syl22anc 839 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) →
(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓‘𝑗)(ball‘𝐷)𝑥)) |
| 23 | 10, 22 | fssd 6753 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝐷)𝑥)) |
| 24 | | rphalfcl 13062 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
| 25 | 8 | simp3d 1145 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+ ∃𝑢 ∈ ran
ℤ≥(𝑓
↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦)) |
| 26 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 / 2) →
(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦) =
(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 27 | 26 | feq3d 6723 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 / 2) → ((𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 28 | 27 | rexbidv 3179 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 29 | 28 | rspcv 3618 |
. . . . . . . . . 10
⊢ ((𝑥 / 2) ∈ ℝ+
→ (∀𝑦 ∈
ℝ+ ∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 30 | 24, 25, 29 | syl2im 40 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((𝐷 ∈
(∞Met‘𝑋) ∧
𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 31 | 30 | impcom 407 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) →
∃𝑢 ∈ ran
ℤ≥(𝑓
↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 32 | | uzf 12881 |
. . . . . . . . 9
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 33 | | ffn 6736 |
. . . . . . . . 9
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
| 34 | | reseq2 5992 |
. . . . . . . . . . 11
⊢ (𝑢 =
(ℤ≥‘𝑗) → (𝑓 ↾ 𝑢) = (𝑓 ↾ (ℤ≥‘𝑗))) |
| 35 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑢 =
(ℤ≥‘𝑗) → 𝑢 = (ℤ≥‘𝑗)) |
| 36 | 34, 35 | feq12d 6724 |
. . . . . . . . . 10
⊢ (𝑢 =
(ℤ≥‘𝑗) → ((𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 37 | 36 | rexrn 7107 |
. . . . . . . . 9
⊢
(ℤ≥ Fn ℤ → (∃𝑢 ∈ ran ℤ≥(𝑓 ↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) |
| 38 | 32, 33, 37 | mp2b 10 |
. . . . . . . 8
⊢
(∃𝑢 ∈ ran
ℤ≥(𝑓
↾ 𝑢):𝑢⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 39 | 31, 38 | sylib 218 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℤ
(𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶(((⇝𝑡‘𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))) |
| 40 | 23, 39 | reximddv 3171 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℤ
(𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝐷)𝑥)) |
| 41 | 40 | ralrimiva 3146 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝐷)𝑥)) |
| 42 | | iscau 25310 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝐷)𝑥)))) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝐷)𝑥)))) |
| 44 | 9, 41, 43 | mpbir2and 713 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷)) |
| 45 | 44 | ex 412 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷))) |
| 46 | 5, 45 | sylbid 240 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom
(⇝𝑡‘𝐽) → 𝑓 ∈ (Cau‘𝐷))) |
| 47 | 46 | ssrdv 3989 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom
(⇝𝑡‘𝐽) ⊆ (Cau‘𝐷)) |