MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   GIF version

Theorem lmcau 25246
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lmcau (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))

Proof of Theorem lmcau
Dummy variables 𝑥 𝑦 𝑓 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21methaus 24441 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
3 lmfun 23302 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
4 funfvbrb 6990 . . . 4 (Fun (⇝𝑡𝐽) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
52, 3, 43syl 18 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
6 id 22 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
71, 6lmmbr 25191 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))))
87biimpa 476 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦)))
98simp1d 1142 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (𝑋pm ℂ))
10 simprr 772 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
11 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
128simp2d 1143 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
1312ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
14 rpre 12905 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1514ad2antlr 727 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ)
16 uzid 12753 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ𝑗))
1817fvresd 6848 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
1910, 17ffvelcdmd 7024 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2018, 19eqeltrrd 2832 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
21 blhalf 24326 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2211, 13, 15, 20, 21syl22anc 838 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2310, 22fssd 6674 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
24 rphalfcl 12925 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
258simp3d 1144 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))
26 oveq2 7360 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 2) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) = (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2726feq3d 6642 . . . . . . . . . . . 12 (𝑦 = (𝑥 / 2) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2827rexbidv 3156 . . . . . . . . . . 11 (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2928rspcv 3568 . . . . . . . . . 10 ((𝑥 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3024, 25, 29syl2im 40 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3130impcom 407 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
32 uzf 12741 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
33 ffn 6657 . . . . . . . . 9 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
34 reseq2 5928 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → (𝑓𝑢) = (𝑓 ↾ (ℤ𝑗)))
35 id 22 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → 𝑢 = (ℤ𝑗))
3634, 35feq12d 6645 . . . . . . . . . 10 (𝑢 = (ℤ𝑗) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3736rexrn 7026 . . . . . . . . 9 (ℤ Fn ℤ → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3832, 33, 37mp2b 10 . . . . . . . 8 (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
3931, 38sylib 218 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4023, 39reximddv 3148 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
4140ralrimiva 3124 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
42 iscau 25209 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
4342adantr 480 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
449, 41, 43mpbir2and 713 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷))
4544ex 412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷)))
465, 45sylbid 240 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) → 𝑓 ∈ (Cau‘𝐷)))
4746ssrdv 3935 1 (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  𝒫 cpw 4549   class class class wbr 5093  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6481   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  pm cpm 8757  cc 11010  cr 11011   / cdiv 11780  2c2 12186  cz 12474  cuz 12738  +crp 12896  ∞Metcxmet 21282  ballcbl 21284  MetOpencmopn 21287  𝑡clm 23147  Hauscha 23229  Cauccau 25186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-inf 9333  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-n0 12388  df-z 12475  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13258  df-topgen 17353  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-bases 22867  df-lm 23150  df-haus 23236  df-cau 25189
This theorem is referenced by:  hlimcaui  31223
  Copyright terms: Public domain W3C validator