MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1frn Structured version   Visualization version   GIF version

Theorem i1frn 25667
Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1frn (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)

Proof of Theorem i1frn
StepHypRef Expression
1 isi1f 25664 . . 3 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
21simprbi 496 . 2 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
32simp2d 1143 1 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2107  cdif 3930  {csn 4608  ccnv 5666  dom cdm 5667  ran crn 5668  cima 5670  wf 6538  cfv 6542  Fincfn 8968  cr 11137  0cc0 11138  volcvol 25453  MblFncmbf 25604  1citg1 25605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-sum 15706  df-itg1 25610
This theorem is referenced by:  i1fima  25668  itg1cl  25675  itg1ge0  25676  i1fadd  25685  i1fmul  25686  itg1addlem4  25689  itg1addlem5  25690  i1fmulc  25693  itg1mulc  25694  i1fres  25695  itg10a  25700  itg1ge0a  25701  itg1climres  25704  itg2addnclem2  37620  ftc1anclem3  37643  ftc1anclem6  37646  ftc1anclem7  37647  ftc1anc  37649
  Copyright terms: Public domain W3C validator