Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version |
Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 24849 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 497 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp2d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2110 ∖ cdif 3889 {csn 4567 ◡ccnv 5589 dom cdm 5590 ran crn 5591 “ cima 5593 ⟶wf 6428 ‘cfv 6432 Fincfn 8725 ℝcr 10881 0cc0 10882 volcvol 24638 MblFncmbf 24789 ∫1citg1 24790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-sum 15409 df-itg1 24795 |
This theorem is referenced by: i1fima 24853 itg1cl 24860 itg1ge0 24861 i1fadd 24870 i1fmul 24871 itg1addlem4 24874 itg1addlem4OLD 24875 itg1addlem5 24876 i1fmulc 24879 itg1mulc 24880 i1fres 24881 itg10a 24886 itg1ge0a 24887 itg1climres 24890 itg2addnclem2 35838 ftc1anclem3 35861 ftc1anclem6 35864 ftc1anclem7 35865 ftc1anc 35867 |
Copyright terms: Public domain | W3C validator |