| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25602 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∖ cdif 3894 {csn 4573 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 ℝcr 11005 0cc0 11006 volcvol 25391 MblFncmbf 25542 ∫1citg1 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-sum 15594 df-itg1 25548 |
| This theorem is referenced by: i1fima 25606 itg1cl 25613 itg1ge0 25614 i1fadd 25623 i1fmul 25624 itg1addlem4 25627 itg1addlem5 25628 i1fmulc 25631 itg1mulc 25632 i1fres 25633 itg10a 25638 itg1ge0a 25639 itg1climres 25642 itg2addnclem2 37722 ftc1anclem3 37745 ftc1anclem6 37748 ftc1anclem7 37749 ftc1anc 37751 |
| Copyright terms: Public domain | W3C validator |