| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25581 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3913 {csn 4591 ◡ccnv 5639 dom cdm 5640 ran crn 5641 “ cima 5643 ⟶wf 6509 ‘cfv 6513 Fincfn 8920 ℝcr 11073 0cc0 11074 volcvol 25370 MblFncmbf 25521 ∫1citg1 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-sum 15659 df-itg1 25527 |
| This theorem is referenced by: i1fima 25585 itg1cl 25592 itg1ge0 25593 i1fadd 25602 i1fmul 25603 itg1addlem4 25606 itg1addlem5 25607 i1fmulc 25610 itg1mulc 25611 i1fres 25612 itg10a 25617 itg1ge0a 25618 itg1climres 25621 itg2addnclem2 37661 ftc1anclem3 37684 ftc1anclem6 37687 ftc1anclem7 37688 ftc1anc 37690 |
| Copyright terms: Public domain | W3C validator |