| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25575 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 Fincfn 8918 ℝcr 11067 0cc0 11068 volcvol 25364 MblFncmbf 25515 ∫1citg1 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-sum 15653 df-itg1 25521 |
| This theorem is referenced by: i1fima 25579 itg1cl 25586 itg1ge0 25587 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 itg1addlem5 25601 i1fmulc 25604 itg1mulc 25605 i1fres 25606 itg10a 25611 itg1ge0a 25612 itg1climres 25615 itg2addnclem2 37666 ftc1anclem3 37689 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anc 37695 |
| Copyright terms: Public domain | W3C validator |