| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version | ||
| Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25551 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3908 {csn 4585 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 Fincfn 8895 ℝcr 11043 0cc0 11044 volcvol 25340 MblFncmbf 25491 ∫1citg1 25492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-sum 15629 df-itg1 25497 |
| This theorem is referenced by: i1fima 25555 itg1cl 25562 itg1ge0 25563 i1fadd 25572 i1fmul 25573 itg1addlem4 25576 itg1addlem5 25577 i1fmulc 25580 itg1mulc 25581 i1fres 25582 itg10a 25587 itg1ge0a 25588 itg1climres 25591 itg2addnclem2 37639 ftc1anclem3 37662 ftc1anclem6 37665 ftc1anclem7 37666 ftc1anc 37668 |
| Copyright terms: Public domain | W3C validator |