| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsati | Structured version Visualization version GIF version | ||
| Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
| Ref | Expression |
|---|---|
| islsati.v | ⊢ 𝑉 = (Base‘𝑊) |
| islsati.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islsati.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsati | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4089 | . 2 ⊢ (𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 | |
| 2 | islsati.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | islsati.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | islsati.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | 2, 3, 4, 5 | islsat 38989 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}))) |
| 7 | 6 | biimpa 476 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣})) |
| 8 | ssrexv 4007 | . 2 ⊢ ((𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣}))) | |
| 9 | 1, 7, 8 | mpsyl 68 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 ‘cfv 6486 Basecbs 17139 0gc0g 17362 LSpanclspn 20893 LSAtomsclsa 38972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-lsatoms 38974 |
| This theorem is referenced by: lsmsatcv 39008 dihjat2 41430 dvh4dimlem 41442 lcfl8 41501 mapdval2N 41629 mapdspex 41667 hdmaprnlem16N 41861 |
| Copyright terms: Public domain | W3C validator |