Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 37859
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Baseβ€˜π‘Š)
islsati.n 𝑁 = (LSpanβ€˜π‘Š)
islsati.a 𝐴 = (LSAtomsβ€˜π‘Š)
Assertion
Ref Expression
islsati ((π‘Š ∈ 𝑋 ∧ π‘ˆ ∈ 𝐴) β†’ βˆƒπ‘£ ∈ 𝑉 π‘ˆ = (π‘β€˜{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,π‘ˆ   𝑣,𝑉   𝑣,π‘Š   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 4131 . 2 (𝑉 βˆ– {(0gβ€˜π‘Š)}) βŠ† 𝑉
2 islsati.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
3 islsati.n . . . 4 𝑁 = (LSpanβ€˜π‘Š)
4 eqid 2732 . . . 4 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
5 islsati.a . . . 4 𝐴 = (LSAtomsβ€˜π‘Š)
62, 3, 4, 5islsat 37856 . . 3 (π‘Š ∈ 𝑋 β†’ (π‘ˆ ∈ 𝐴 ↔ βˆƒπ‘£ ∈ (𝑉 βˆ– {(0gβ€˜π‘Š)})π‘ˆ = (π‘β€˜{𝑣})))
76biimpa 477 . 2 ((π‘Š ∈ 𝑋 ∧ π‘ˆ ∈ 𝐴) β†’ βˆƒπ‘£ ∈ (𝑉 βˆ– {(0gβ€˜π‘Š)})π‘ˆ = (π‘β€˜{𝑣}))
8 ssrexv 4051 . 2 ((𝑉 βˆ– {(0gβ€˜π‘Š)}) βŠ† 𝑉 β†’ (βˆƒπ‘£ ∈ (𝑉 βˆ– {(0gβ€˜π‘Š)})π‘ˆ = (π‘β€˜{𝑣}) β†’ βˆƒπ‘£ ∈ 𝑉 π‘ˆ = (π‘β€˜{𝑣})))
91, 7, 8mpsyl 68 1 ((π‘Š ∈ 𝑋 ∧ π‘ˆ ∈ 𝐴) β†’ βˆƒπ‘£ ∈ 𝑉 π‘ˆ = (π‘β€˜{𝑣}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  β€˜cfv 6543  Basecbs 17143  0gc0g 17384  LSpanclspn 20581  LSAtomsclsa 37839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-lsatoms 37841
This theorem is referenced by:  lsmsatcv  37875  dihjat2  40297  dvh4dimlem  40309  lcfl8  40368  mapdval2N  40496  mapdspex  40534  hdmaprnlem16N  40728
  Copyright terms: Public domain W3C validator