| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsati | Structured version Visualization version GIF version | ||
| Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
| Ref | Expression |
|---|---|
| islsati.v | ⊢ 𝑉 = (Base‘𝑊) |
| islsati.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islsati.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsati | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4081 | . 2 ⊢ (𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 | |
| 2 | islsati.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | islsati.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | islsati.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | 2, 3, 4, 5 | islsat 39030 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}))) |
| 7 | 6 | biimpa 476 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣})) |
| 8 | ssrexv 3999 | . 2 ⊢ ((𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣}))) | |
| 9 | 1, 7, 8 | mpsyl 68 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3894 ⊆ wss 3897 {csn 4571 ‘cfv 6476 Basecbs 17115 0gc0g 17338 LSpanclspn 20899 LSAtomsclsa 39013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-lsatoms 39015 |
| This theorem is referenced by: lsmsatcv 39049 dihjat2 41470 dvh4dimlem 41482 lcfl8 41541 mapdval2N 41669 mapdspex 41707 hdmaprnlem16N 41901 |
| Copyright terms: Public domain | W3C validator |