Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 39017
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Base‘𝑊)
islsati.n 𝑁 = (LSpan‘𝑊)
islsati.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsati ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 4116 . 2 (𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉
2 islsati.v . . . 4 𝑉 = (Base‘𝑊)
3 islsati.n . . . 4 𝑁 = (LSpan‘𝑊)
4 eqid 2736 . . . 4 (0g𝑊) = (0g𝑊)
5 islsati.a . . . 4 𝐴 = (LSAtoms‘𝑊)
62, 3, 4, 5islsat 39014 . . 3 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣})))
76biimpa 476 . 2 ((𝑊𝑋𝑈𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}))
8 ssrexv 4033 . 2 ((𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣})))
91, 7, 8mpsyl 68 1 ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  cdif 3928  wss 3931  {csn 4606  cfv 6536  Basecbs 17233  0gc0g 17458  LSpanclspn 20933  LSAtomsclsa 38997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-lsatoms 38999
This theorem is referenced by:  lsmsatcv  39033  dihjat2  41455  dvh4dimlem  41467  lcfl8  41526  mapdval2N  41654  mapdspex  41692  hdmaprnlem16N  41886
  Copyright terms: Public domain W3C validator