![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islsati | Structured version Visualization version GIF version |
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
Ref | Expression |
---|---|
islsati.v | β’ π = (Baseβπ) |
islsati.n | β’ π = (LSpanβπ) |
islsati.a | β’ π΄ = (LSAtomsβπ) |
Ref | Expression |
---|---|
islsati | β’ ((π β π β§ π β π΄) β βπ£ β π π = (πβ{π£})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4131 | . 2 β’ (π β {(0gβπ)}) β π | |
2 | islsati.v | . . . 4 β’ π = (Baseβπ) | |
3 | islsati.n | . . . 4 β’ π = (LSpanβπ) | |
4 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
5 | islsati.a | . . . 4 β’ π΄ = (LSAtomsβπ) | |
6 | 2, 3, 4, 5 | islsat 37856 | . . 3 β’ (π β π β (π β π΄ β βπ£ β (π β {(0gβπ)})π = (πβ{π£}))) |
7 | 6 | biimpa 477 | . 2 β’ ((π β π β§ π β π΄) β βπ£ β (π β {(0gβπ)})π = (πβ{π£})) |
8 | ssrexv 4051 | . 2 β’ ((π β {(0gβπ)}) β π β (βπ£ β (π β {(0gβπ)})π = (πβ{π£}) β βπ£ β π π = (πβ{π£}))) | |
9 | 1, 7, 8 | mpsyl 68 | 1 β’ ((π β π β§ π β π΄) β βπ£ β π π = (πβ{π£})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β cdif 3945 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17143 0gc0g 17384 LSpanclspn 20581 LSAtomsclsa 37839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-lsatoms 37841 |
This theorem is referenced by: lsmsatcv 37875 dihjat2 40297 dvh4dimlem 40309 lcfl8 40368 mapdval2N 40496 mapdspex 40534 hdmaprnlem16N 40728 |
Copyright terms: Public domain | W3C validator |