| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsati | Structured version Visualization version GIF version | ||
| Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
| Ref | Expression |
|---|---|
| islsati.v | ⊢ 𝑉 = (Base‘𝑊) |
| islsati.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islsati.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsati | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4085 | . 2 ⊢ (𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 | |
| 2 | islsati.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | islsati.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | islsati.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | 2, 3, 4, 5 | islsat 39163 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}))) |
| 7 | 6 | biimpa 476 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣})) |
| 8 | ssrexv 4000 | . 2 ⊢ ((𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣}))) | |
| 9 | 1, 7, 8 | mpsyl 68 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ‘cfv 6489 Basecbs 17127 0gc0g 17350 LSpanclspn 20913 LSAtomsclsa 39146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-lsatoms 39148 |
| This theorem is referenced by: lsmsatcv 39182 dihjat2 41603 dvh4dimlem 41615 lcfl8 41674 mapdval2N 41802 mapdspex 41840 hdmaprnlem16N 42034 |
| Copyright terms: Public domain | W3C validator |