Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 35608
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Base‘𝑊)
islsati.n 𝑁 = (LSpan‘𝑊)
islsati.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsati ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 3993 . 2 (𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉
2 islsati.v . . . 4 𝑉 = (Base‘𝑊)
3 islsati.n . . . 4 𝑁 = (LSpan‘𝑊)
4 eqid 2773 . . . 4 (0g𝑊) = (0g𝑊)
5 islsati.a . . . 4 𝐴 = (LSAtoms‘𝑊)
62, 3, 4, 5islsat 35605 . . 3 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣})))
76biimpa 469 . 2 ((𝑊𝑋𝑈𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}))
8 ssrexv 3919 . 2 ((𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣})))
91, 7, 8mpsyl 68 1 ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wrex 3084  cdif 3821  wss 3824  {csn 4436  cfv 6186  Basecbs 16338  0gc0g 16568  LSpanclspn 19478  LSAtomsclsa 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-fv 6194  df-lsatoms 35590
This theorem is referenced by:  lsmsatcv  35624  dihjat2  38045  dvh4dimlem  38057  lcfl8  38116  mapdval2N  38244  mapdspex  38282  hdmaprnlem16N  38476
  Copyright terms: Public domain W3C validator