Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 38976
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Base‘𝑊)
islsati.n 𝑁 = (LSpan‘𝑊)
islsati.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsati ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 4146 . 2 (𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉
2 islsati.v . . . 4 𝑉 = (Base‘𝑊)
3 islsati.n . . . 4 𝑁 = (LSpan‘𝑊)
4 eqid 2735 . . . 4 (0g𝑊) = (0g𝑊)
5 islsati.a . . . 4 𝐴 = (LSAtoms‘𝑊)
62, 3, 4, 5islsat 38973 . . 3 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣})))
76biimpa 476 . 2 ((𝑊𝑋𝑈𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}))
8 ssrexv 4065 . 2 ((𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣})))
91, 7, 8mpsyl 68 1 ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  cdif 3960  wss 3963  {csn 4631  cfv 6563  Basecbs 17245  0gc0g 17486  LSpanclspn 20987  LSAtomsclsa 38956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-lsatoms 38958
This theorem is referenced by:  lsmsatcv  38992  dihjat2  41414  dvh4dimlem  41426  lcfl8  41485  mapdval2N  41613  mapdspex  41651  hdmaprnlem16N  41845
  Copyright terms: Public domain W3C validator