Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islsati | Structured version Visualization version GIF version |
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
Ref | Expression |
---|---|
islsati.v | ⊢ 𝑉 = (Base‘𝑊) |
islsati.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islsati.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
Ref | Expression |
---|---|
islsati | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4062 | . 2 ⊢ (𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 | |
2 | islsati.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | islsati.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | islsati.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
6 | 2, 3, 4, 5 | islsat 36932 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}))) |
7 | 6 | biimpa 476 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣})) |
8 | ssrexv 3984 | . 2 ⊢ ((𝑉 ∖ {(0g‘𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣}))) | |
9 | 1, 7, 8 | mpsyl 68 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LSpanclspn 20148 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-lsatoms 36917 |
This theorem is referenced by: lsmsatcv 36951 dihjat2 39372 dvh4dimlem 39384 lcfl8 39443 mapdval2N 39571 mapdspex 39609 hdmaprnlem16N 39803 |
Copyright terms: Public domain | W3C validator |