Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 38390
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Base‘𝑊)
islsati.n 𝑁 = (LSpan‘𝑊)
islsati.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsati ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 4127 . 2 (𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉
2 islsati.v . . . 4 𝑉 = (Base‘𝑊)
3 islsati.n . . . 4 𝑁 = (LSpan‘𝑊)
4 eqid 2727 . . . 4 (0g𝑊) = (0g𝑊)
5 islsati.a . . . 4 𝐴 = (LSAtoms‘𝑊)
62, 3, 4, 5islsat 38387 . . 3 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣})))
76biimpa 476 . 2 ((𝑊𝑋𝑈𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}))
8 ssrexv 4047 . 2 ((𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣})))
91, 7, 8mpsyl 68 1 ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3065  cdif 3941  wss 3944  {csn 4624  cfv 6542  Basecbs 17165  0gc0g 17406  LSpanclspn 20837  LSAtomsclsa 38370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-lsatoms 38372
This theorem is referenced by:  lsmsatcv  38406  dihjat2  40828  dvh4dimlem  40840  lcfl8  40899  mapdval2N  41027  mapdspex  41065  hdmaprnlem16N  41259
  Copyright terms: Public domain W3C validator