Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsati Structured version   Visualization version   GIF version

Theorem islsati 38950
Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
Hypotheses
Ref Expression
islsati.v 𝑉 = (Base‘𝑊)
islsati.n 𝑁 = (LSpan‘𝑊)
islsati.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsati ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem islsati
StepHypRef Expression
1 difss 4159 . 2 (𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉
2 islsati.v . . . 4 𝑉 = (Base‘𝑊)
3 islsati.n . . . 4 𝑁 = (LSpan‘𝑊)
4 eqid 2740 . . . 4 (0g𝑊) = (0g𝑊)
5 islsati.a . . . 4 𝐴 = (LSAtoms‘𝑊)
62, 3, 4, 5islsat 38947 . . 3 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣})))
76biimpa 476 . 2 ((𝑊𝑋𝑈𝐴) → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}))
8 ssrexv 4078 . 2 ((𝑉 ∖ {(0g𝑊)}) ⊆ 𝑉 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑈 = (𝑁‘{𝑣}) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣})))
91, 7, 8mpsyl 68 1 ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  wss 3976  {csn 4648  cfv 6573  Basecbs 17258  0gc0g 17499  LSpanclspn 20992  LSAtomsclsa 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-lsatoms 38932
This theorem is referenced by:  lsmsatcv  38966  dihjat2  41388  dvh4dimlem  41400  lcfl8  41459  mapdval2N  41587  mapdspex  41625  hdmaprnlem16N  41819
  Copyright terms: Public domain W3C validator