Step | Hyp | Ref
| Expression |
1 | | dvh3dim.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | dvh3dim.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | eqid 2731 |
. . 3
β’
(LSSumβπ) =
(LSSumβπ) |
4 | | eqid 2731 |
. . 3
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
5 | | dvh3dim.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
6 | | dvh3dim.v |
. . . 4
β’ π = (Baseβπ) |
7 | | dvh3dim.n |
. . . 4
β’ π = (LSpanβπ) |
8 | | dvh4dim.o |
. . . 4
β’ 0 =
(0gβπ) |
9 | 1, 2, 5 | dvhlmod 40285 |
. . . 4
β’ (π β π β LMod) |
10 | | dvh3dim.x |
. . . . 5
β’ (π β π β π) |
11 | | dvh4dim.x |
. . . . 5
β’ (π β π β 0 ) |
12 | | eldifsn 4791 |
. . . . 5
β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) |
13 | 10, 11, 12 | sylanbrc 582 |
. . . 4
β’ (π β π β (π β { 0 })) |
14 | 6, 7, 8, 4, 9, 13 | lsatlspsn 38167 |
. . 3
β’ (π β (πβ{π}) β (LSAtomsβπ)) |
15 | | dvh4dim.y |
. . . . 5
β’ (π β π β π) |
16 | | dvh4dimlem.y |
. . . . 5
β’ (π β π β 0 ) |
17 | | eldifsn 4791 |
. . . . 5
β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) |
18 | 15, 16, 17 | sylanbrc 582 |
. . . 4
β’ (π β π β (π β { 0 })) |
19 | 6, 7, 8, 4, 9, 18 | lsatlspsn 38167 |
. . 3
β’ (π β (πβ{π}) β (LSAtomsβπ)) |
20 | | dvhdim.z |
. . . . 5
β’ (π β π β π) |
21 | | dvh4dimlem.z |
. . . . 5
β’ (π β π β 0 ) |
22 | | eldifsn 4791 |
. . . . 5
β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) |
23 | 20, 21, 22 | sylanbrc 582 |
. . . 4
β’ (π β π β (π β { 0 })) |
24 | 6, 7, 8, 4, 9, 23 | lsatlspsn 38167 |
. . 3
β’ (π β (πβ{π}) β (LSAtomsβπ)) |
25 | 1, 2, 3, 4, 5, 14,
19, 24 | dvh4dimat 40613 |
. 2
β’ (π β βπ β (LSAtomsβπ) Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) |
26 | 9 | 3ad2ant1 1132 |
. . . . 5
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β π β LMod) |
27 | | simp2 1136 |
. . . . 5
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β π β (LSAtomsβπ)) |
28 | 6, 7, 4 | islsati 38168 |
. . . . 5
β’ ((π β LMod β§ π β (LSAtomsβπ)) β βπ§ β π π = (πβ{π§})) |
29 | 26, 27, 28 | syl2anc 583 |
. . . 4
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β βπ§ β π π = (πβ{π§})) |
30 | | simp2 1136 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β π = (πβ{π§})) |
31 | 9 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β π β LMod) |
32 | 10 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β π β π) |
33 | 15 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β π β π) |
34 | 6, 7, 3, 31, 32, 33 | lsmpr 20845 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (πβ{π, π}) = ((πβ{π})(LSSumβπ)(πβ{π}))) |
35 | 34 | oveq1d 7427 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β ((πβ{π, π})(LSSumβπ)(πβ{π})) = (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) |
36 | | prssi 4825 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β π β§ π β π) β {π, π} β π) |
37 | 10, 15, 36 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
β’ (π β {π, π} β π) |
38 | 37 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β {π, π} β π) |
39 | 20 | snssd 4813 |
. . . . . . . . . . . . . . . . 17
β’ (π β {π} β π) |
40 | 39 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β {π} β π) |
41 | 6, 7, 3 | lsmsp2 20843 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ {π, π} β π β§ {π} β π) β ((πβ{π, π})(LSSumβπ)(πβ{π})) = (πβ({π, π} βͺ {π}))) |
42 | 31, 38, 40, 41 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β ((πβ{π, π})(LSSumβπ)(πβ{π})) = (πβ({π, π} βͺ {π}))) |
43 | 35, 42 | eqtr3d 2773 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) = (πβ({π, π} βͺ {π}))) |
44 | 30, 43 | sseq12d 4016 |
. . . . . . . . . . . . 13
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β (πβ{π§}) β (πβ({π, π} βͺ {π})))) |
45 | | eqid 2731 |
. . . . . . . . . . . . . 14
β’
(LSubSpβπ) =
(LSubSpβπ) |
46 | 37, 39 | unssd 4187 |
. . . . . . . . . . . . . . . 16
β’ (π β ({π, π} βͺ {π}) β π) |
47 | 6, 45, 7 | lspcl 20732 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ ({π, π} βͺ {π}) β π) β (πβ({π, π} βͺ {π})) β (LSubSpβπ)) |
48 | 9, 46, 47 | syl2anc 583 |
. . . . . . . . . . . . . . 15
β’ (π β (πβ({π, π} βͺ {π})) β (LSubSpβπ)) |
49 | 48 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (πβ({π, π} βͺ {π})) β (LSubSpβπ)) |
50 | | simp3 1137 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β π§ β π) |
51 | 6, 45, 7, 31, 49, 50 | lspsnel5 20751 |
. . . . . . . . . . . . 13
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (π§ β (πβ({π, π} βͺ {π})) β (πβ{π§}) β (πβ({π, π} βͺ {π})))) |
52 | 44, 51 | bitr4d 281 |
. . . . . . . . . . . 12
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β π§ β (πβ({π, π} βͺ {π})))) |
53 | | df-tp 4634 |
. . . . . . . . . . . . . 14
β’ {π, π, π} = ({π, π} βͺ {π}) |
54 | 53 | fveq2i 6895 |
. . . . . . . . . . . . 13
β’ (πβ{π, π, π}) = (πβ({π, π} βͺ {π})) |
55 | 54 | eleq2i 2824 |
. . . . . . . . . . . 12
β’ (π§ β (πβ{π, π, π}) β π§ β (πβ({π, π} βͺ {π}))) |
56 | 52, 55 | bitr4di 288 |
. . . . . . . . . . 11
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β π§ β (πβ{π, π, π}))) |
57 | 56 | notbid 317 |
. . . . . . . . . 10
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β Β¬ π§ β (πβ{π, π, π}))) |
58 | 57 | biimpd 228 |
. . . . . . . . 9
β’ ((π β§ π = (πβ{π§}) β§ π§ β π) β (Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β Β¬ π§ β (πβ{π, π, π}))) |
59 | 58 | 3exp 1118 |
. . . . . . . 8
β’ (π β (π = (πβ{π§}) β (π§ β π β (Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β Β¬ π§ β (πβ{π, π, π}))))) |
60 | 59 | com24 95 |
. . . . . . 7
β’ (π β (Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β (π§ β π β (π = (πβ{π§}) β Β¬ π§ β (πβ{π, π, π}))))) |
61 | 60 | a1d 25 |
. . . . . 6
β’ (π β (π β (LSAtomsβπ) β (Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β (π§ β π β (π = (πβ{π§}) β Β¬ π§ β (πβ{π, π, π})))))) |
62 | 61 | 3imp 1110 |
. . . . 5
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β (π§ β π β (π = (πβ{π§}) β Β¬ π§ β (πβ{π, π, π})))) |
63 | 62 | reximdvai 3164 |
. . . 4
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β (βπ§ β π π = (πβ{π§}) β βπ§ β π Β¬ π§ β (πβ{π, π, π}))) |
64 | 29, 63 | mpd 15 |
. . 3
β’ ((π β§ π β (LSAtomsβπ) β§ Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π}))) β βπ§ β π Β¬ π§ β (πβ{π, π, π})) |
65 | 64 | rexlimdv3a 3158 |
. 2
β’ (π β (βπ β (LSAtomsβπ) Β¬ π β (((πβ{π})(LSSumβπ)(πβ{π}))(LSSumβπ)(πβ{π})) β βπ§ β π Β¬ π§ β (πβ{π, π, π}))) |
66 | 25, 65 | mpd 15 |
1
β’ (π β βπ§ β π Β¬ π§ β (πβ{π, π, π})) |