| Step | Hyp | Ref
| Expression |
| 1 | | dvh3dim.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | dvh3dim.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | eqid 2737 |
. . 3
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
| 4 | | eqid 2737 |
. . 3
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
| 5 | | dvh3dim.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | | dvh3dim.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
| 7 | | dvh3dim.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑈) |
| 8 | | dvh4dim.o |
. . . 4
⊢ 0 =
(0g‘𝑈) |
| 9 | 1, 2, 5 | dvhlmod 41112 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | | dvh3dim.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 11 | | dvh4dim.x |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 12 | | eldifsn 4786 |
. . . . 5
⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) |
| 13 | 10, 11, 12 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 14 | 6, 7, 8, 4, 9, 13 | lsatlspsn 38994 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) |
| 15 | | dvh4dim.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 16 | | dvh4dimlem.y |
. . . . 5
⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 17 | | eldifsn 4786 |
. . . . 5
⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) |
| 18 | 15, 16, 17 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 19 | 6, 7, 8, 4, 9, 18 | lsatlspsn 38994 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSAtoms‘𝑈)) |
| 20 | | dvhdim.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 21 | | dvh4dimlem.z |
. . . . 5
⊢ (𝜑 → 𝑍 ≠ 0 ) |
| 22 | | eldifsn 4786 |
. . . . 5
⊢ (𝑍 ∈ (𝑉 ∖ { 0 }) ↔ (𝑍 ∈ 𝑉 ∧ 𝑍 ≠ 0 )) |
| 23 | 20, 21, 22 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 24 | 6, 7, 8, 4, 9, 23 | lsatlspsn 38994 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSAtoms‘𝑈)) |
| 25 | 1, 2, 3, 4, 5, 14,
19, 24 | dvh4dimat 41440 |
. 2
⊢ (𝜑 → ∃𝑝 ∈ (LSAtoms‘𝑈) ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) |
| 26 | 9 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → 𝑈 ∈ LMod) |
| 27 | | simp2 1138 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → 𝑝 ∈ (LSAtoms‘𝑈)) |
| 28 | 6, 7, 4 | islsati 38995 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → ∃𝑧 ∈ 𝑉 𝑝 = (𝑁‘{𝑧})) |
| 29 | 26, 27, 28 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → ∃𝑧 ∈ 𝑉 𝑝 = (𝑁‘{𝑧})) |
| 30 | | simp2 1138 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → 𝑝 = (𝑁‘{𝑧})) |
| 31 | 9 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → 𝑈 ∈ LMod) |
| 32 | 10 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 33 | 15 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
| 34 | 6, 7, 3, 31, 32, 33 | lsmpr 21088 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) |
| 35 | 34 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → ((𝑁‘{𝑋, 𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) = (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) |
| 36 | | prssi 4821 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
| 37 | 10, 15, 36 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 38 | 37 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
| 39 | 20 | snssd 4809 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {𝑍} ⊆ 𝑉) |
| 40 | 39 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → {𝑍} ⊆ 𝑉) |
| 41 | 6, 7, 3 | lsmsp2 21086 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑍} ⊆ 𝑉) → ((𝑁‘{𝑋, 𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) = (𝑁‘({𝑋, 𝑌} ∪ {𝑍}))) |
| 42 | 31, 38, 40, 41 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → ((𝑁‘{𝑋, 𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) = (𝑁‘({𝑋, 𝑌} ∪ {𝑍}))) |
| 43 | 35, 42 | eqtr3d 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) = (𝑁‘({𝑋, 𝑌} ∪ {𝑍}))) |
| 44 | 30, 43 | sseq12d 4017 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) ↔ (𝑁‘{𝑧}) ⊆ (𝑁‘({𝑋, 𝑌} ∪ {𝑍})))) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 46 | 37, 39 | unssd 4192 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ({𝑋, 𝑌} ∪ {𝑍}) ⊆ 𝑉) |
| 47 | 6, 45, 7 | lspcl 20974 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ LMod ∧ ({𝑋, 𝑌} ∪ {𝑍}) ⊆ 𝑉) → (𝑁‘({𝑋, 𝑌} ∪ {𝑍})) ∈ (LSubSp‘𝑈)) |
| 48 | 9, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁‘({𝑋, 𝑌} ∪ {𝑍})) ∈ (LSubSp‘𝑈)) |
| 49 | 48 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑁‘({𝑋, 𝑌} ∪ {𝑍})) ∈ (LSubSp‘𝑈)) |
| 50 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → 𝑧 ∈ 𝑉) |
| 51 | 6, 45, 7, 31, 49, 50 | ellspsn5b 20993 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑧 ∈ (𝑁‘({𝑋, 𝑌} ∪ {𝑍})) ↔ (𝑁‘{𝑧}) ⊆ (𝑁‘({𝑋, 𝑌} ∪ {𝑍})))) |
| 52 | 44, 51 | bitr4d 282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) ↔ 𝑧 ∈ (𝑁‘({𝑋, 𝑌} ∪ {𝑍})))) |
| 53 | | df-tp 4631 |
. . . . . . . . . . . . . 14
⊢ {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍}) |
| 54 | 53 | fveq2i 6909 |
. . . . . . . . . . . . 13
⊢ (𝑁‘{𝑋, 𝑌, 𝑍}) = (𝑁‘({𝑋, 𝑌} ∪ {𝑍})) |
| 55 | 54 | eleq2i 2833 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}) ↔ 𝑧 ∈ (𝑁‘({𝑋, 𝑌} ∪ {𝑍}))) |
| 56 | 52, 55 | bitr4di 289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 57 | 56 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 58 | 57 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 = (𝑁‘{𝑧}) ∧ 𝑧 ∈ 𝑉) → (¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 59 | 58 | 3exp 1120 |
. . . . . . . 8
⊢ (𝜑 → (𝑝 = (𝑁‘{𝑧}) → (𝑧 ∈ 𝑉 → (¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))))) |
| 60 | 59 | com24 95 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) → (𝑧 ∈ 𝑉 → (𝑝 = (𝑁‘{𝑧}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))))) |
| 61 | 60 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (𝑝 ∈ (LSAtoms‘𝑈) → (¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) → (𝑧 ∈ 𝑉 → (𝑝 = (𝑁‘{𝑧}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))))) |
| 62 | 61 | 3imp 1111 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → (𝑧 ∈ 𝑉 → (𝑝 = (𝑁‘{𝑧}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})))) |
| 63 | 62 | reximdvai 3165 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → (∃𝑧 ∈ 𝑉 𝑝 = (𝑁‘{𝑧}) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 64 | 29, 63 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈) ∧ ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍}))) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |
| 65 | 64 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑝 ∈ (LSAtoms‘𝑈) ¬ 𝑝 ⊆ (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))(LSSum‘𝑈)(𝑁‘{𝑍})) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍}))) |
| 66 | 25, 65 | mpd 15 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑍})) |