Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdspex Structured version   Visualization version   GIF version

Theorem mapdspex 38922
 Description: The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
mapdspex.h 𝐻 = (LHyp‘𝐾)
mapdspex.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdspex.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdspex.v 𝑉 = (Base‘𝑈)
mapdspex.n 𝑁 = (LSpan‘𝑈)
mapdspex.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdspex.b 𝐵 = (Base‘𝐶)
mapdspex.j 𝐽 = (LSpan‘𝐶)
mapdspex.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdspex.x (𝜑𝑋𝑉)
Assertion
Ref Expression
mapdspex (𝜑 → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
Distinct variable groups:   𝐵,𝑔   𝐶,𝑔   𝑔,𝐽   𝑔,𝑀   𝑔,𝑁   𝑔,𝑋
Allowed substitution hints:   𝜑(𝑔)   𝑈(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem mapdspex
StepHypRef Expression
1 mapdspex.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdspex.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdspex.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38846 . . . 4 (𝜑𝐶 ∈ LMod)
54adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → 𝐶 ∈ LMod)
6 mapdspex.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
7 mapdspex.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2822 . . . 4 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
9 eqid 2822 . . . 4 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
103adantr 484 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpr 488 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈))
121, 6, 7, 8, 2, 9, 10, 11mapdat 38921 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝑀‘(𝑁‘{𝑋})) ∈ (LSAtoms‘𝐶))
13 mapdspex.b . . . 4 𝐵 = (Base‘𝐶)
14 mapdspex.j . . . 4 𝐽 = (LSpan‘𝐶)
1513, 14, 9islsati 36248 . . 3 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑋})) ∈ (LSAtoms‘𝐶)) → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
165, 12, 15syl2anc 587 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
17 eqid 2822 . . . . 5 (0g𝐶) = (0g𝐶)
181, 2, 13, 17, 3lcd0vcl 38868 . . . 4 (𝜑 → (0g𝐶) ∈ 𝐵)
1918adantr 484 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g𝑈)}) → (0g𝐶) ∈ 𝐵)
20 fveq2 6652 . . . 4 ((𝑁‘{𝑋}) = {(0g𝑈)} → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{(0g𝑈)}))
21 eqid 2822 . . . . . 6 (0g𝑈) = (0g𝑈)
221, 6, 7, 21, 2, 17, 3mapd0 38919 . . . . 5 (𝜑 → (𝑀‘{(0g𝑈)}) = {(0g𝐶)})
2317, 14lspsn0 19771 . . . . . 6 (𝐶 ∈ LMod → (𝐽‘{(0g𝐶)}) = {(0g𝐶)})
244, 23syl 17 . . . . 5 (𝜑 → (𝐽‘{(0g𝐶)}) = {(0g𝐶)})
2522, 24eqtr4d 2860 . . . 4 (𝜑 → (𝑀‘{(0g𝑈)}) = (𝐽‘{(0g𝐶)}))
2620, 25sylan9eqr 2879 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g𝑈)}) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(0g𝐶)}))
27 sneq 4549 . . . . 5 (𝑔 = (0g𝐶) → {𝑔} = {(0g𝐶)})
2827fveq2d 6656 . . . 4 (𝑔 = (0g𝐶) → (𝐽‘{𝑔}) = (𝐽‘{(0g𝐶)}))
2928rspceeqv 3613 . . 3 (((0g𝐶) ∈ 𝐵 ∧ (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(0g𝐶)})) → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
3019, 26, 29syl2anc 587 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g𝑈)}) → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
31 mapdspex.v . . 3 𝑉 = (Base‘𝑈)
32 mapdspex.n . . 3 𝑁 = (LSpan‘𝑈)
331, 7, 3dvhlmod 38364 . . 3 (𝜑𝑈 ∈ LMod)
34 mapdspex.x . . 3 (𝜑𝑋𝑉)
3531, 32, 21, 8, 33, 34lsator0sp 36255 . 2 (𝜑 → ((𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈) ∨ (𝑁‘{𝑋}) = {(0g𝑈)}))
3616, 30, 35mpjaodan 956 1 (𝜑 → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ∃wrex 3131  {csn 4539  ‘cfv 6334  Basecbs 16474  0gc0g 16704  LModclmod 19625  LSpanclspn 19734  LSAtomsclsa 36228  HLchlt 36604  LHypclh 37238  DVecHcdvh 38332  LCDualclcd 38840  mapdcmpd 38878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36207 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-0g 16706  df-mre 16848  df-mrc 16849  df-acs 16851  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-oppg 18465  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19495  df-lmod 19627  df-lss 19695  df-lsp 19735  df-lvec 19866  df-lsatoms 36230  df-lshyp 36231  df-lcv 36273  df-lfl 36312  df-lkr 36340  df-ldual 36378  df-oposet 36430  df-ol 36432  df-oml 36433  df-covers 36520  df-ats 36521  df-atl 36552  df-cvlat 36576  df-hlat 36605  df-llines 36752  df-lplanes 36753  df-lvols 36754  df-lines 36755  df-psubsp 36757  df-pmap 36758  df-padd 37050  df-lhyp 37242  df-laut 37243  df-ldil 37358  df-ltrn 37359  df-trl 37413  df-tgrp 37997  df-tendo 38009  df-edring 38011  df-dveca 38257  df-disoa 38283  df-dvech 38333  df-dib 38393  df-dic 38427  df-dih 38483  df-doch 38602  df-djh 38649  df-lcdual 38841  df-mapd 38879 This theorem is referenced by:  mapdpglem2  38927
 Copyright terms: Public domain W3C validator