Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdspex | Structured version Visualization version GIF version |
Description: The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015.) |
Ref | Expression |
---|---|
mapdspex.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdspex.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdspex.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdspex.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdspex.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdspex.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdspex.b | ⊢ 𝐵 = (Base‘𝐶) |
mapdspex.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdspex.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdspex.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
mapdspex | ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdspex.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdspex.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | mapdspex.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 39911 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | 4 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → 𝐶 ∈ LMod) |
6 | mapdspex.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
7 | mapdspex.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | eqid 2737 | . . . 4 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
9 | eqid 2737 | . . . 4 ⊢ (LSAtoms‘𝐶) = (LSAtoms‘𝐶) | |
10 | 3 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) | |
12 | 1, 6, 7, 8, 2, 9, 10, 11 | mapdat 39986 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → (𝑀‘(𝑁‘{𝑋})) ∈ (LSAtoms‘𝐶)) |
13 | mapdspex.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
14 | mapdspex.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
15 | 13, 14, 9 | islsati 37312 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑋})) ∈ (LSAtoms‘𝐶)) → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
16 | 5, 12, 15 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈)) → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
17 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
18 | 1, 2, 13, 17, 3 | lcd0vcl 39933 | . . . 4 ⊢ (𝜑 → (0g‘𝐶) ∈ 𝐵) |
19 | 18 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g‘𝑈)}) → (0g‘𝐶) ∈ 𝐵) |
20 | fveq2 6829 | . . . 4 ⊢ ((𝑁‘{𝑋}) = {(0g‘𝑈)} → (𝑀‘(𝑁‘{𝑋})) = (𝑀‘{(0g‘𝑈)})) | |
21 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
22 | 1, 6, 7, 21, 2, 17, 3 | mapd0 39984 | . . . . 5 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
23 | 17, 14 | lspsn0 20375 | . . . . . 6 ⊢ (𝐶 ∈ LMod → (𝐽‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
24 | 4, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
25 | 22, 24 | eqtr4d 2780 | . . . 4 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = (𝐽‘{(0g‘𝐶)})) |
26 | 20, 25 | sylan9eqr 2799 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g‘𝑈)}) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(0g‘𝐶)})) |
27 | sneq 4587 | . . . . 5 ⊢ (𝑔 = (0g‘𝐶) → {𝑔} = {(0g‘𝐶)}) | |
28 | 27 | fveq2d 6833 | . . . 4 ⊢ (𝑔 = (0g‘𝐶) → (𝐽‘{𝑔}) = (𝐽‘{(0g‘𝐶)})) |
29 | 28 | rspceeqv 3587 | . . 3 ⊢ (((0g‘𝐶) ∈ 𝐵 ∧ (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(0g‘𝐶)})) → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
30 | 19, 26, 29 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = {(0g‘𝑈)}) → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
31 | mapdspex.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
32 | mapdspex.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
33 | 1, 7, 3 | dvhlmod 39429 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
34 | mapdspex.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
35 | 31, 32, 21, 8, 33, 34 | lsator0sp 37319 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ (LSAtoms‘𝑈) ∨ (𝑁‘{𝑋}) = {(0g‘𝑈)})) |
36 | 16, 30, 35 | mpjaodan 957 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 {csn 4577 ‘cfv 6483 Basecbs 17009 0gc0g 17247 LModclmod 20228 LSpanclspn 20338 LSAtomsclsa 37292 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 LCDualclcd 39905 mapdcmpd 39943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-tpos 8116 df-undef 8163 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-0g 17249 df-mre 17392 df-mrc 17393 df-acs 17395 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-cntz 19019 df-oppg 19046 df-lsm 19337 df-cmn 19483 df-abl 19484 df-mgp 19815 df-ur 19832 df-ring 19879 df-oppr 19956 df-dvdsr 19977 df-unit 19978 df-invr 20008 df-dvr 20019 df-drng 20094 df-lmod 20230 df-lss 20299 df-lsp 20339 df-lvec 20470 df-lsatoms 37294 df-lshyp 37295 df-lcv 37337 df-lfl 37376 df-lkr 37404 df-ldual 37442 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tgrp 39062 df-tendo 39074 df-edring 39076 df-dveca 39322 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 df-djh 39714 df-lcdual 39906 df-mapd 39944 |
This theorem is referenced by: mapdpglem2 39992 |
Copyright terms: Public domain | W3C validator |