Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Visualization version   GIF version

Theorem islsat 37005
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsat (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝑊   𝑥,𝑋   𝑥,𝑁   𝑥,𝑈   𝑥,𝑉   𝑥, 0
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
2 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatset.z . . . 4 0 = (0g𝑊)
4 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 37004 . . 3 (𝑊𝑋𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))
65eleq2d 2824 . 2 (𝑊𝑋 → (𝑈𝐴𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))))
7 eqid 2738 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))
8 fvex 6787 . . 3 (𝑁‘{𝑥}) ∈ V
97, 8elrnmpti 5869 . 2 (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))
106, 9bitrdi 287 1 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  {csn 4561  cmpt 5157  ran crn 5590  cfv 6433  Basecbs 16912  0gc0g 17150  LSpanclspn 20233  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-lsatoms 36990
This theorem is referenced by:  lsatlspsn2  37006  lsatlspsn  37007  islsati  37008  lsateln0  37009  lsatn0  37013  lsatcmp  37017  lsmsat  37022  lsatfixedN  37023  islshpat  37031  lsatcv0  37045  lsat0cv  37047  lcv1  37055  l1cvpat  37068  dih1dimatlem  39343  dihlatat  39351  dochsatshp  39465
  Copyright terms: Public domain W3C validator