Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version |
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatset.z | ⊢ 0 = (0g‘𝑊) |
lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
Ref | Expression |
---|---|
islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | 1, 2, 3, 4 | lsatset 36931 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
7 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
8 | fvex 6769 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
9 | 7, 8 | elrnmpti 5858 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
10 | 6, 9 | bitrdi 286 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LSpanclspn 20148 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-lsatoms 36917 |
This theorem is referenced by: lsatlspsn2 36933 lsatlspsn 36934 islsati 36935 lsateln0 36936 lsatn0 36940 lsatcmp 36944 lsmsat 36949 lsatfixedN 36950 islshpat 36958 lsatcv0 36972 lsat0cv 36974 lcv1 36982 l1cvpat 36995 dih1dimatlem 39270 dihlatat 39278 dochsatshp 39392 |
Copyright terms: Public domain | W3C validator |