| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | 1, 2, 3, 4 | lsatset 39008 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
| 6 | 5 | eleq2d 2820 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
| 7 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
| 8 | fvex 6889 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
| 9 | 7, 8 | elrnmpti 5942 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∖ cdif 3923 {csn 4601 ↦ cmpt 5201 ran crn 5655 ‘cfv 6531 Basecbs 17228 0gc0g 17453 LSpanclspn 20928 LSAtomsclsa 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-lsatoms 38994 |
| This theorem is referenced by: lsatlspsn2 39010 lsatlspsn 39011 islsati 39012 lsateln0 39013 lsatn0 39017 lsatcmp 39021 lsmsat 39026 lsatfixedN 39027 islshpat 39035 lsatcv0 39049 lsat0cv 39051 lcv1 39059 l1cvpat 39072 dih1dimatlem 41348 dihlatat 41356 dochsatshp 41470 |
| Copyright terms: Public domain | W3C validator |