| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | 1, 2, 3, 4 | lsatset 38968 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
| 7 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
| 8 | fvex 6839 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
| 9 | 7, 8 | elrnmpti 5908 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3902 {csn 4579 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 Basecbs 17138 0gc0g 17361 LSpanclspn 20892 LSAtomsclsa 38952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-lsatoms 38954 |
| This theorem is referenced by: lsatlspsn2 38970 lsatlspsn 38971 islsati 38972 lsateln0 38973 lsatn0 38977 lsatcmp 38981 lsmsat 38986 lsatfixedN 38987 islshpat 38995 lsatcv0 39009 lsat0cv 39011 lcv1 39019 l1cvpat 39032 dih1dimatlem 41308 dihlatat 41316 dochsatshp 41430 |
| Copyright terms: Public domain | W3C validator |