| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | 1, 2, 3, 4 | lsatset 39110 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
| 6 | 5 | eleq2d 2819 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
| 7 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
| 8 | fvex 6841 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
| 9 | 7, 8 | elrnmpti 5906 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∖ cdif 3895 {csn 4575 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 Basecbs 17122 0gc0g 17345 LSpanclspn 20906 LSAtomsclsa 39094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-lsatoms 39096 |
| This theorem is referenced by: lsatlspsn2 39112 lsatlspsn 39113 islsati 39114 lsateln0 39115 lsatn0 39119 lsatcmp 39123 lsmsat 39128 lsatfixedN 39129 islshpat 39137 lsatcv0 39151 lsat0cv 39153 lcv1 39161 l1cvpat 39174 dih1dimatlem 41449 dihlatat 41457 dochsatshp 41571 |
| Copyright terms: Public domain | W3C validator |