| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | 1, 2, 3, 4 | lsatset 39028 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
| 6 | 5 | eleq2d 2817 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
| 7 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
| 8 | fvex 6835 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
| 9 | 7, 8 | elrnmpti 5902 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3899 {csn 4576 ↦ cmpt 5172 ran crn 5617 ‘cfv 6481 Basecbs 17117 0gc0g 17340 LSpanclspn 20902 LSAtomsclsa 39012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-lsatoms 39014 |
| This theorem is referenced by: lsatlspsn2 39030 lsatlspsn 39031 islsati 39032 lsateln0 39033 lsatn0 39037 lsatcmp 39041 lsmsat 39046 lsatfixedN 39047 islshpat 39055 lsatcv0 39069 lsat0cv 39071 lcv1 39079 l1cvpat 39092 dih1dimatlem 41367 dihlatat 41375 dochsatshp 41489 |
| Copyright terms: Public domain | W3C validator |