Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Visualization version   GIF version

Theorem islsat 36235
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsat (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝑊   𝑥,𝑋   𝑥,𝑁   𝑥,𝑈   𝑥,𝑉   𝑥, 0
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
2 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatset.z . . . 4 0 = (0g𝑊)
4 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 36234 . . 3 (𝑊𝑋𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))
65eleq2d 2901 . 2 (𝑊𝑋 → (𝑈𝐴𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))))
7 eqid 2824 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))
8 fvex 6674 . . 3 (𝑁‘{𝑥}) ∈ V
97, 8elrnmpti 5819 . 2 (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))
106, 9syl6bb 290 1 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  wrex 3134  cdif 3916  {csn 4550  cmpt 5132  ran crn 5543  cfv 6343  Basecbs 16483  0gc0g 16713  LSpanclspn 19743  LSAtomsclsa 36218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-lsatoms 36220
This theorem is referenced by:  lsatlspsn2  36236  lsatlspsn  36237  islsati  36238  lsateln0  36239  lsatn0  36243  lsatcmp  36247  lsmsat  36252  lsatfixedN  36253  islshpat  36261  lsatcv0  36275  lsat0cv  36277  lcv1  36285  l1cvpat  36298  dih1dimatlem  38573  dihlatat  38581  dochsatshp  38695
  Copyright terms: Public domain W3C validator