Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Visualization version   GIF version

Theorem islsat 36932
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsat (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝑊   𝑥,𝑋   𝑥,𝑁   𝑥,𝑈   𝑥,𝑉   𝑥, 0
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
2 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatset.z . . . 4 0 = (0g𝑊)
4 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 36931 . . 3 (𝑊𝑋𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))
65eleq2d 2824 . 2 (𝑊𝑋 → (𝑈𝐴𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))))
7 eqid 2738 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))
8 fvex 6769 . . 3 (𝑁‘{𝑥}) ∈ V
97, 8elrnmpti 5858 . 2 (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))
106, 9bitrdi 286 1 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  {csn 4558  cmpt 5153  ran crn 5581  cfv 6418  Basecbs 16840  0gc0g 17067  LSpanclspn 20148  LSAtomsclsa 36915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-lsatoms 36917
This theorem is referenced by:  lsatlspsn2  36933  lsatlspsn  36934  islsati  36935  lsateln0  36936  lsatn0  36940  lsatcmp  36944  lsmsat  36949  lsatfixedN  36950  islshpat  36958  lsatcv0  36972  lsat0cv  36974  lcv1  36982  l1cvpat  36995  dih1dimatlem  39270  dihlatat  39278  dochsatshp  39392
  Copyright terms: Public domain W3C validator