| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islsat | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| Ref | Expression |
|---|---|
| islsat | ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | 1, 2, 3, 4 | lsatset 38990 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))) |
| 6 | 5 | eleq2d 2815 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))) |
| 7 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) | |
| 8 | fvex 6874 | . . 3 ⊢ (𝑁‘{𝑥}) ∈ V | |
| 9 | 7, 8 | elrnmpti 5929 | . 2 ⊢ (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∖ cdif 3914 {csn 4592 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 Basecbs 17186 0gc0g 17409 LSpanclspn 20884 LSAtomsclsa 38974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-lsatoms 38976 |
| This theorem is referenced by: lsatlspsn2 38992 lsatlspsn 38993 islsati 38994 lsateln0 38995 lsatn0 38999 lsatcmp 39003 lsmsat 39008 lsatfixedN 39009 islshpat 39017 lsatcv0 39031 lsat0cv 39033 lcv1 39041 l1cvpat 39054 dih1dimatlem 41330 dihlatat 41338 dochsatshp 41452 |
| Copyright terms: Public domain | W3C validator |