Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islsat Structured version   Visualization version   GIF version

Theorem islsat 35012
Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
islsat (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝑊   𝑥,𝑋   𝑥,𝑁   𝑥,𝑈   𝑥,𝑉   𝑥, 0
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem islsat
StepHypRef Expression
1 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
2 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatset.z . . . 4 0 = (0g𝑊)
4 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 35011 . . 3 (𝑊𝑋𝐴 = ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})))
65eleq2d 2864 . 2 (𝑊𝑋 → (𝑈𝐴𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))))
7 eqid 2799 . . 3 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥}))
8 fvex 6424 . . 3 (𝑁‘{𝑥}) ∈ V
97, 8elrnmpti 5580 . 2 (𝑈 ∈ ran (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑥})) ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))
106, 9syl6bb 279 1 (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wrex 3090  cdif 3766  {csn 4368  cmpt 4922  ran crn 5313  cfv 6101  Basecbs 16184  0gc0g 16415  LSpanclspn 19292  LSAtomsclsa 34995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-lsatoms 34997
This theorem is referenced by:  lsatlspsn2  35013  lsatlspsn  35014  islsati  35015  lsateln0  35016  lsatn0  35020  lsatcmp  35024  lsmsat  35029  lsatfixedN  35030  islshpat  35038  lsatcv0  35052  lsat0cv  35054  lcv1  35062  l1cvpat  35075  dih1dimatlem  37350  dihlatat  37358  dochsatshp  37472
  Copyright terms: Public domain W3C validator