Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Visualization version   GIF version

Theorem lsmsatcv 36620
 Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29547 analog.) Explicit atom version of lsmcv 19994. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s 𝑆 = (LSubSp‘𝑊)
lsmsatcv.p = (LSSum‘𝑊)
lsmsatcv.a 𝐴 = (LSAtoms‘𝑊)
lsmsatcv.w (𝜑𝑊 ∈ LVec)
lsmsatcv.t (𝜑𝑇𝑆)
lsmsatcv.u (𝜑𝑈𝑆)
lsmsatcv.x (𝜑𝑄𝐴)
Assertion
Ref Expression
lsmsatcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))

Proof of Theorem lsmsatcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lsmsatcv.x . . . 4 (𝜑𝑄𝐴)
3 eqid 2758 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2758 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsatcv.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
63, 4, 5islsati 36604 . . . 4 ((𝑊 ∈ LVec ∧ 𝑄𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
71, 2, 6syl2anc 587 . . 3 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
8 lsmsatcv.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
9 lsmsatcv.p . . . . . . . 8 = (LSSum‘𝑊)
101adantr 484 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
11 lsmsatcv.t . . . . . . . . 9 (𝜑𝑇𝑆)
1211adantr 484 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇𝑆)
13 lsmsatcv.u . . . . . . . . 9 (𝜑𝑈𝑆)
1413adantr 484 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈𝑆)
15 simpr 488 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
163, 8, 4, 9, 10, 12, 14, 15lsmcv 19994 . . . . . . 7 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
17163expib 1119 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
18173adant3 1129 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
19 oveq2 7164 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 𝑄) = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
2019sseq2d 3926 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 𝑄) ↔ 𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2120anbi2d 631 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) ↔ (𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2219eqeq2d 2769 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 𝑄) ↔ 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2321, 22imbi12d 348 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
24233ad2ant3 1132 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2518, 24mpbird 260 . . . 4 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
2625rexlimdv3a 3210 . . 3 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))))
277, 26mpd 15 . 2 (𝜑 → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
28273impib 1113 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3071   ⊆ wss 3860   ⊊ wpss 3861  {csn 4525  ‘cfv 6340  (class class class)co 7156  Basecbs 16554  LSSumclsm 18839  LSubSpclss 19784  LSpanclspn 19824  LVecclvec 19955  LSAtomsclsa 36584 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-0g 16786  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-sbg 18187  df-subg 18356  df-lsm 18841  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-invr 19506  df-drng 19585  df-lmod 19717  df-lss 19785  df-lsp 19825  df-lvec 19956  df-lsatoms 36586 This theorem is referenced by:  dochsat  38993
 Copyright terms: Public domain W3C validator