Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsatcv | Structured version Visualization version GIF version |
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29915 analog.) Explicit atom version of lsmcv 20318. (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lsmsatcv.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsmsatcv.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsmsatcv.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsmsatcv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsmsatcv.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lsmsatcv.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsmsatcv.x | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
Ref | Expression |
---|---|
lsmsatcv | ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsatcv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lsmsatcv.x | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
3 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lsmsatcv.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
6 | 3, 4, 5 | islsati 36935 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑄 ∈ 𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
7 | 1, 2, 6 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
8 | lsmsatcv.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | lsmsatcv.p | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec) |
11 | lsmsatcv.t | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ 𝑆) |
13 | lsmsatcv.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ 𝑆) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊)) | |
16 | 3, 8, 4, 9, 10, 12, 14, 15 | lsmcv 20318 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) |
17 | 16 | 3expib 1120 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
18 | 17 | 3adant3 1130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
19 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 ⊕ 𝑄) = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
20 | 19 | sseq2d 3949 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 ⊕ 𝑄) ↔ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
21 | 20 | anbi2d 628 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) ↔ (𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
22 | 19 | eqeq2d 2749 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 ⊕ 𝑄) ↔ 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
23 | 21, 22 | imbi12d 344 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
24 | 23 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
25 | 18, 24 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
26 | 25 | rexlimdv3a 3214 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)))) |
27 | 7, 26 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
28 | 27 | 3impib 1114 | 1 ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ⊊ wpss 3884 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 LSSumclsm 19154 LSubSpclss 20108 LSpanclspn 20148 LVecclvec 20279 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 |
This theorem is referenced by: dochsat 39324 |
Copyright terms: Public domain | W3C validator |