Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Visualization version   GIF version

Theorem lsmsatcv 38970
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31599 analog.) Explicit atom version of lsmcv 21111. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s 𝑆 = (LSubSp‘𝑊)
lsmsatcv.p = (LSSum‘𝑊)
lsmsatcv.a 𝐴 = (LSAtoms‘𝑊)
lsmsatcv.w (𝜑𝑊 ∈ LVec)
lsmsatcv.t (𝜑𝑇𝑆)
lsmsatcv.u (𝜑𝑈𝑆)
lsmsatcv.x (𝜑𝑄𝐴)
Assertion
Ref Expression
lsmsatcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))

Proof of Theorem lsmsatcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lsmsatcv.x . . . 4 (𝜑𝑄𝐴)
3 eqid 2734 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2734 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsatcv.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
63, 4, 5islsati 38954 . . . 4 ((𝑊 ∈ LVec ∧ 𝑄𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
71, 2, 6syl2anc 584 . . 3 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
8 lsmsatcv.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
9 lsmsatcv.p . . . . . . . 8 = (LSSum‘𝑊)
101adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
11 lsmsatcv.t . . . . . . . . 9 (𝜑𝑇𝑆)
1211adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇𝑆)
13 lsmsatcv.u . . . . . . . . 9 (𝜑𝑈𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈𝑆)
15 simpr 484 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
163, 8, 4, 9, 10, 12, 14, 15lsmcv 21111 . . . . . . 7 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
17163expib 1122 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
18173adant3 1132 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
19 oveq2 7421 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 𝑄) = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
2019sseq2d 3996 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 𝑄) ↔ 𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2120anbi2d 630 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) ↔ (𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2219eqeq2d 2745 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 𝑄) ↔ 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2321, 22imbi12d 344 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
24233ad2ant3 1135 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2518, 24mpbird 257 . . . 4 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
2625rexlimdv3a 3146 . . 3 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))))
277, 26mpd 15 . 2 (𝜑 → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
28273impib 1116 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  wss 3931  wpss 3932  {csn 4606  cfv 6541  (class class class)co 7413  Basecbs 17229  LSSumclsm 19620  LSubSpclss 20897  LSpanclspn 20937  LVecclvec 21069  LSAtomsclsa 38934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lvec 21070  df-lsatoms 38936
This theorem is referenced by:  dochsat  41344
  Copyright terms: Public domain W3C validator