![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsatcv | Structured version Visualization version GIF version |
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31160 analog.) Explicit atom version of lsmcv 20899. (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lsmsatcv.s | β’ π = (LSubSpβπ) |
lsmsatcv.p | β’ β = (LSSumβπ) |
lsmsatcv.a | β’ π΄ = (LSAtomsβπ) |
lsmsatcv.w | β’ (π β π β LVec) |
lsmsatcv.t | β’ (π β π β π) |
lsmsatcv.u | β’ (π β π β π) |
lsmsatcv.x | β’ (π β π β π΄) |
Ref | Expression |
---|---|
lsmsatcv | β’ ((π β§ π β π β§ π β (π β π)) β π = (π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsatcv.w | . . . 4 β’ (π β π β LVec) | |
2 | lsmsatcv.x | . . . 4 β’ (π β π β π΄) | |
3 | eqid 2732 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
4 | eqid 2732 | . . . . 5 β’ (LSpanβπ) = (LSpanβπ) | |
5 | lsmsatcv.a | . . . . 5 β’ π΄ = (LSAtomsβπ) | |
6 | 3, 4, 5 | islsati 38167 | . . . 4 β’ ((π β LVec β§ π β π΄) β βπ£ β (Baseβπ)π = ((LSpanβπ)β{π£})) |
7 | 1, 2, 6 | syl2anc 584 | . . 3 β’ (π β βπ£ β (Baseβπ)π = ((LSpanβπ)β{π£})) |
8 | lsmsatcv.s | . . . . . . . 8 β’ π = (LSubSpβπ) | |
9 | lsmsatcv.p | . . . . . . . 8 β’ β = (LSSumβπ) | |
10 | 1 | adantr 481 | . . . . . . . 8 β’ ((π β§ π£ β (Baseβπ)) β π β LVec) |
11 | lsmsatcv.t | . . . . . . . . 9 β’ (π β π β π) | |
12 | 11 | adantr 481 | . . . . . . . 8 β’ ((π β§ π£ β (Baseβπ)) β π β π) |
13 | lsmsatcv.u | . . . . . . . . 9 β’ (π β π β π) | |
14 | 13 | adantr 481 | . . . . . . . 8 β’ ((π β§ π£ β (Baseβπ)) β π β π) |
15 | simpr 485 | . . . . . . . 8 β’ ((π β§ π£ β (Baseβπ)) β π£ β (Baseβπ)) | |
16 | 3, 8, 4, 9, 10, 12, 14, 15 | lsmcv 20899 | . . . . . . 7 β’ (((π β§ π£ β (Baseβπ)) β§ π β π β§ π β (π β ((LSpanβπ)β{π£}))) β π = (π β ((LSpanβπ)β{π£}))) |
17 | 16 | 3expib 1122 | . . . . . 6 β’ ((π β§ π£ β (Baseβπ)) β ((π β π β§ π β (π β ((LSpanβπ)β{π£}))) β π = (π β ((LSpanβπ)β{π£})))) |
18 | 17 | 3adant3 1132 | . . . . 5 β’ ((π β§ π£ β (Baseβπ) β§ π = ((LSpanβπ)β{π£})) β ((π β π β§ π β (π β ((LSpanβπ)β{π£}))) β π = (π β ((LSpanβπ)β{π£})))) |
19 | oveq2 7419 | . . . . . . . . 9 β’ (π = ((LSpanβπ)β{π£}) β (π β π) = (π β ((LSpanβπ)β{π£}))) | |
20 | 19 | sseq2d 4014 | . . . . . . . 8 β’ (π = ((LSpanβπ)β{π£}) β (π β (π β π) β π β (π β ((LSpanβπ)β{π£})))) |
21 | 20 | anbi2d 629 | . . . . . . 7 β’ (π = ((LSpanβπ)β{π£}) β ((π β π β§ π β (π β π)) β (π β π β§ π β (π β ((LSpanβπ)β{π£}))))) |
22 | 19 | eqeq2d 2743 | . . . . . . 7 β’ (π = ((LSpanβπ)β{π£}) β (π = (π β π) β π = (π β ((LSpanβπ)β{π£})))) |
23 | 21, 22 | imbi12d 344 | . . . . . 6 β’ (π = ((LSpanβπ)β{π£}) β (((π β π β§ π β (π β π)) β π = (π β π)) β ((π β π β§ π β (π β ((LSpanβπ)β{π£}))) β π = (π β ((LSpanβπ)β{π£}))))) |
24 | 23 | 3ad2ant3 1135 | . . . . 5 β’ ((π β§ π£ β (Baseβπ) β§ π = ((LSpanβπ)β{π£})) β (((π β π β§ π β (π β π)) β π = (π β π)) β ((π β π β§ π β (π β ((LSpanβπ)β{π£}))) β π = (π β ((LSpanβπ)β{π£}))))) |
25 | 18, 24 | mpbird 256 | . . . 4 β’ ((π β§ π£ β (Baseβπ) β§ π = ((LSpanβπ)β{π£})) β ((π β π β§ π β (π β π)) β π = (π β π))) |
26 | 25 | rexlimdv3a 3159 | . . 3 β’ (π β (βπ£ β (Baseβπ)π = ((LSpanβπ)β{π£}) β ((π β π β§ π β (π β π)) β π = (π β π)))) |
27 | 7, 26 | mpd 15 | . 2 β’ (π β ((π β π β§ π β (π β π)) β π = (π β π))) |
28 | 27 | 3impib 1116 | 1 β’ ((π β§ π β π β§ π β (π β π)) β π = (π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3948 β wpss 3949 {csn 4628 βcfv 6543 (class class class)co 7411 Basecbs 17148 LSSumclsm 19543 LSubSpclss 20686 LSpanclspn 20726 LVecclvec 20857 LSAtomsclsa 38147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lvec 20858 df-lsatoms 38149 |
This theorem is referenced by: dochsat 40557 |
Copyright terms: Public domain | W3C validator |