| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsatcv | Structured version Visualization version GIF version | ||
| Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31627 analog.) Explicit atom version of lsmcv 21076. (Contributed by NM, 29-Oct-2014.) |
| Ref | Expression |
|---|---|
| lsmsatcv.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmsatcv.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmsatcv.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsmsatcv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsmsatcv.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lsmsatcv.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsmsatcv.x | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsmsatcv | ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsatcv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lsmsatcv.x | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lsmsatcv.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | 3, 4, 5 | islsati 39032 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑄 ∈ 𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 7 | 1, 2, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 8 | lsmsatcv.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | lsmsatcv.p | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec) |
| 11 | lsmsatcv.t | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ 𝑆) |
| 13 | lsmsatcv.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ 𝑆) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊)) | |
| 16 | 3, 8, 4, 9, 10, 12, 14, 15 | lsmcv 21076 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) |
| 17 | 16 | 3expib 1122 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 18 | 17 | 3adant3 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 19 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 ⊕ 𝑄) = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
| 20 | 19 | sseq2d 3967 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 ⊕ 𝑄) ↔ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 21 | 20 | anbi2d 630 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) ↔ (𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 22 | 19 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 ⊕ 𝑄) ↔ 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 23 | 21, 22 | imbi12d 344 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 24 | 23 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 25 | 18, 24 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
| 26 | 25 | rexlimdv3a 3137 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)))) |
| 27 | 7, 26 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
| 28 | 27 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ⊊ wpss 3903 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 LSSumclsm 19544 LSubSpclss 20862 LSpanclspn 20902 LVecclvec 21034 LSAtomsclsa 39012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lsatoms 39014 |
| This theorem is referenced by: dochsat 41421 |
| Copyright terms: Public domain | W3C validator |