| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsatcv | Structured version Visualization version GIF version | ||
| Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31599 analog.) Explicit atom version of lsmcv 21111. (Contributed by NM, 29-Oct-2014.) |
| Ref | Expression |
|---|---|
| lsmsatcv.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmsatcv.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmsatcv.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsmsatcv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsmsatcv.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lsmsatcv.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsmsatcv.x | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsmsatcv | ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsatcv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lsmsatcv.x | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lsmsatcv.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | 3, 4, 5 | islsati 38954 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑄 ∈ 𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 7 | 1, 2, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 8 | lsmsatcv.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | lsmsatcv.p | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec) |
| 11 | lsmsatcv.t | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ 𝑆) |
| 13 | lsmsatcv.u | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ 𝑆) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊)) | |
| 16 | 3, 8, 4, 9, 10, 12, 14, 15 | lsmcv 21111 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) |
| 17 | 16 | 3expib 1122 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 18 | 17 | 3adant3 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 19 | oveq2 7421 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 ⊕ 𝑄) = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
| 20 | 19 | sseq2d 3996 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 ⊕ 𝑄) ↔ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 21 | 20 | anbi2d 630 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) ↔ (𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 22 | 19 | eqeq2d 2745 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 ⊕ 𝑄) ↔ 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣})))) |
| 23 | 21, 22 | imbi12d 344 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 24 | 23 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) ↔ ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ⊕ ((LSpan‘𝑊)‘{𝑣}))))) |
| 25 | 18, 24 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
| 26 | 25 | rexlimdv3a 3146 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)))) |
| 27 | 7, 26 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄))) |
| 28 | 27 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 ⊊ wpss 3932 {csn 4606 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 LSSumclsm 19620 LSubSpclss 20897 LSpanclspn 20937 LVecclvec 21069 LSAtomsclsa 38934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-drng 20699 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lvec 21070 df-lsatoms 38936 |
| This theorem is referenced by: dochsat 41344 |
| Copyright terms: Public domain | W3C validator |