Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Visualization version   GIF version

Theorem lsmsatcv 39033
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31638 analog.) Explicit atom version of lsmcv 21107. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s 𝑆 = (LSubSp‘𝑊)
lsmsatcv.p = (LSSum‘𝑊)
lsmsatcv.a 𝐴 = (LSAtoms‘𝑊)
lsmsatcv.w (𝜑𝑊 ∈ LVec)
lsmsatcv.t (𝜑𝑇𝑆)
lsmsatcv.u (𝜑𝑈𝑆)
lsmsatcv.x (𝜑𝑄𝐴)
Assertion
Ref Expression
lsmsatcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))

Proof of Theorem lsmsatcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lsmsatcv.x . . . 4 (𝜑𝑄𝐴)
3 eqid 2736 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2736 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsatcv.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
63, 4, 5islsati 39017 . . . 4 ((𝑊 ∈ LVec ∧ 𝑄𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
71, 2, 6syl2anc 584 . . 3 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
8 lsmsatcv.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
9 lsmsatcv.p . . . . . . . 8 = (LSSum‘𝑊)
101adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
11 lsmsatcv.t . . . . . . . . 9 (𝜑𝑇𝑆)
1211adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇𝑆)
13 lsmsatcv.u . . . . . . . . 9 (𝜑𝑈𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈𝑆)
15 simpr 484 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
163, 8, 4, 9, 10, 12, 14, 15lsmcv 21107 . . . . . . 7 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
17163expib 1122 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
18173adant3 1132 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
19 oveq2 7418 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 𝑄) = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
2019sseq2d 3996 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 𝑄) ↔ 𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2120anbi2d 630 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) ↔ (𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2219eqeq2d 2747 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 𝑄) ↔ 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2321, 22imbi12d 344 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
24233ad2ant3 1135 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2518, 24mpbird 257 . . . 4 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
2625rexlimdv3a 3146 . . 3 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))))
277, 26mpd 15 . 2 (𝜑 → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
28273impib 1116 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  wss 3931  wpss 3932  {csn 4606  cfv 6536  (class class class)co 7410  Basecbs 17233  LSSumclsm 19620  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065  LSAtomsclsa 38997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999
This theorem is referenced by:  dochsat  41407
  Copyright terms: Public domain W3C validator