| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version | ||
| Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 2 | eqid 2735 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
| 3 | sneq 4611 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 4 | 3 | fveq2d 6880 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
| 5 | 4 | rspceeqv 3624 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 6 | 1, 2, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 12 | 8, 9, 10, 11 | islsat 39009 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∖ cdif 3923 {csn 4601 ‘cfv 6531 Basecbs 17228 0gc0g 17453 LModclmod 20817 LSpanclspn 20928 LSAtomsclsa 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-lsatoms 38994 |
| This theorem is referenced by: lsatspn0 39018 dvh4dimlem 41462 dochsnshp 41472 lclkrlem2a 41526 lclkrlem2c 41528 lclkrlem2e 41530 lcfrlem20 41581 mapdrvallem2 41664 mapdpglem20 41710 mapdpglem30a 41714 mapdpglem30b 41715 hdmaprnlem3eN 41877 hdmaprnlem16N 41881 |
| Copyright terms: Public domain | W3C validator |