Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Visualization version   GIF version

Theorem lsatlspsn 37851
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Baseβ€˜π‘Š)
lsatset.n 𝑁 = (LSpanβ€˜π‘Š)
lsatset.z 0 = (0gβ€˜π‘Š)
lsatset.a 𝐴 = (LSAtomsβ€˜π‘Š)
lsatlspsn.w (πœ‘ β†’ π‘Š ∈ LMod)
lsatlspsn.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
Assertion
Ref Expression
lsatlspsn (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
2 eqid 2732 . . 3 (π‘β€˜{𝑋}) = (π‘β€˜{𝑋})
3 sneq 4637 . . . . 5 (𝑣 = 𝑋 β†’ {𝑣} = {𝑋})
43fveq2d 6892 . . . 4 (𝑣 = 𝑋 β†’ (π‘β€˜{𝑣}) = (π‘β€˜{𝑋}))
54rspceeqv 3632 . . 3 ((𝑋 ∈ (𝑉 βˆ– { 0 }) ∧ (π‘β€˜{𝑋}) = (π‘β€˜{𝑋})) β†’ βˆƒπ‘£ ∈ (𝑉 βˆ– { 0 })(π‘β€˜{𝑋}) = (π‘β€˜{𝑣}))
61, 2, 5sylancl 586 . 2 (πœ‘ β†’ βˆƒπ‘£ ∈ (𝑉 βˆ– { 0 })(π‘β€˜{𝑋}) = (π‘β€˜{𝑣}))
7 lsatlspsn.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
8 lsatset.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
9 lsatset.n . . . 4 𝑁 = (LSpanβ€˜π‘Š)
10 lsatset.z . . . 4 0 = (0gβ€˜π‘Š)
11 lsatset.a . . . 4 𝐴 = (LSAtomsβ€˜π‘Š)
128, 9, 10, 11islsat 37849 . . 3 (π‘Š ∈ LMod β†’ ((π‘β€˜{𝑋}) ∈ 𝐴 ↔ βˆƒπ‘£ ∈ (𝑉 βˆ– { 0 })(π‘β€˜{𝑋}) = (π‘β€˜{𝑣})))
137, 12syl 17 . 2 (πœ‘ β†’ ((π‘β€˜{𝑋}) ∈ 𝐴 ↔ βˆƒπ‘£ ∈ (𝑉 βˆ– { 0 })(π‘β€˜{𝑋}) = (π‘β€˜{𝑣})))
146, 13mpbird 256 1 (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βˆ– cdif 3944  {csn 4627  β€˜cfv 6540  Basecbs 17140  0gc0g 17381  LModclmod 20463  LSpanclspn 20574  LSAtomsclsa 37832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-lsatoms 37834
This theorem is referenced by:  lsatspn0  37858  dvh4dimlem  40302  dochsnshp  40312  lclkrlem2a  40366  lclkrlem2c  40368  lclkrlem2e  40370  lcfrlem20  40421  mapdrvallem2  40504  mapdpglem20  40550  mapdpglem30a  40554  mapdpglem30b  40555  hdmaprnlem3eN  40717  hdmaprnlem16N  40721
  Copyright terms: Public domain W3C validator