| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version | ||
| Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 2 | eqid 2733 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
| 3 | sneq 4585 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 4 | 3 | fveq2d 6832 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
| 5 | 4 | rspceeqv 3596 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 6 | 1, 2, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 12 | 8, 9, 10, 11 | islsat 39110 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∖ cdif 3895 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 LModclmod 20795 LSpanclspn 20906 LSAtomsclsa 39093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-lsatoms 39095 |
| This theorem is referenced by: lsatspn0 39119 dvh4dimlem 41562 dochsnshp 41572 lclkrlem2a 41626 lclkrlem2c 41628 lclkrlem2e 41630 lcfrlem20 41681 mapdrvallem2 41764 mapdpglem20 41810 mapdpglem30a 41814 mapdpglem30b 41815 hdmaprnlem3eN 41977 hdmaprnlem16N 41981 |
| Copyright terms: Public domain | W3C validator |