Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Visualization version   GIF version

Theorem lsatlspsn 37801
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
lsatlspsn.w (𝜑𝑊 ∈ LMod)
lsatlspsn.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lsatlspsn (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eqid 2733 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
3 sneq 4637 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
43fveq2d 6892 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
54rspceeqv 3632 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
61, 2, 5sylancl 587 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
7 lsatlspsn.w . . 3 (𝜑𝑊 ∈ LMod)
8 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
9 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lsatset.z . . . 4 0 = (0g𝑊)
11 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
128, 9, 10, 11islsat 37799 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
137, 12syl 17 . 2 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
146, 13mpbird 257 1 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wrex 3071  cdif 3944  {csn 4627  cfv 6540  Basecbs 17140  0gc0g 17381  LModclmod 20459  LSpanclspn 20570  LSAtomsclsa 37782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-lsatoms 37784
This theorem is referenced by:  lsatspn0  37808  dvh4dimlem  40252  dochsnshp  40262  lclkrlem2a  40316  lclkrlem2c  40318  lclkrlem2e  40320  lcfrlem20  40371  mapdrvallem2  40454  mapdpglem20  40500  mapdpglem30a  40504  mapdpglem30b  40505  hdmaprnlem3eN  40667  hdmaprnlem16N  40671
  Copyright terms: Public domain W3C validator