![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version |
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatset.z | ⊢ 0 = (0g‘𝑊) |
lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | eqid 2733 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
3 | sneq 4637 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
4 | 3 | fveq2d 6892 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
5 | 4 | rspceeqv 3632 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
6 | 1, 2, 5 | sylancl 587 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
12 | 8, 9, 10, 11 | islsat 37799 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∖ cdif 3944 {csn 4627 ‘cfv 6540 Basecbs 17140 0gc0g 17381 LModclmod 20459 LSpanclspn 20570 LSAtomsclsa 37782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-lsatoms 37784 |
This theorem is referenced by: lsatspn0 37808 dvh4dimlem 40252 dochsnshp 40262 lclkrlem2a 40316 lclkrlem2c 40318 lclkrlem2e 40320 lcfrlem20 40371 mapdrvallem2 40454 mapdpglem20 40500 mapdpglem30a 40504 mapdpglem30b 40505 hdmaprnlem3eN 40667 hdmaprnlem16N 40671 |
Copyright terms: Public domain | W3C validator |