![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version |
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lsatset.v | β’ π = (Baseβπ) |
lsatset.n | β’ π = (LSpanβπ) |
lsatset.z | β’ 0 = (0gβπ) |
lsatset.a | β’ π΄ = (LSAtomsβπ) |
lsatlspsn.w | β’ (π β π β LMod) |
lsatlspsn.x | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
lsatlspsn | β’ (π β (πβ{π}) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatlspsn.x | . . 3 β’ (π β π β (π β { 0 })) | |
2 | eqid 2732 | . . 3 β’ (πβ{π}) = (πβ{π}) | |
3 | sneq 4637 | . . . . 5 β’ (π£ = π β {π£} = {π}) | |
4 | 3 | fveq2d 6892 | . . . 4 β’ (π£ = π β (πβ{π£}) = (πβ{π})) |
5 | 4 | rspceeqv 3632 | . . 3 β’ ((π β (π β { 0 }) β§ (πβ{π}) = (πβ{π})) β βπ£ β (π β { 0 })(πβ{π}) = (πβ{π£})) |
6 | 1, 2, 5 | sylancl 586 | . 2 β’ (π β βπ£ β (π β { 0 })(πβ{π}) = (πβ{π£})) |
7 | lsatlspsn.w | . . 3 β’ (π β π β LMod) | |
8 | lsatset.v | . . . 4 β’ π = (Baseβπ) | |
9 | lsatset.n | . . . 4 β’ π = (LSpanβπ) | |
10 | lsatset.z | . . . 4 β’ 0 = (0gβπ) | |
11 | lsatset.a | . . . 4 β’ π΄ = (LSAtomsβπ) | |
12 | 8, 9, 10, 11 | islsat 37849 | . . 3 β’ (π β LMod β ((πβ{π}) β π΄ β βπ£ β (π β { 0 })(πβ{π}) = (πβ{π£}))) |
13 | 7, 12 | syl 17 | . 2 β’ (π β ((πβ{π}) β π΄ β βπ£ β (π β { 0 })(πβ{π}) = (πβ{π£}))) |
14 | 6, 13 | mpbird 256 | 1 β’ (π β (πβ{π}) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 βwrex 3070 β cdif 3944 {csn 4627 βcfv 6540 Basecbs 17140 0gc0g 17381 LModclmod 20463 LSpanclspn 20574 LSAtomsclsa 37832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-lsatoms 37834 |
This theorem is referenced by: lsatspn0 37858 dvh4dimlem 40302 dochsnshp 40312 lclkrlem2a 40366 lclkrlem2c 40368 lclkrlem2e 40370 lcfrlem20 40421 mapdrvallem2 40504 mapdpglem20 40550 mapdpglem30a 40554 mapdpglem30b 40555 hdmaprnlem3eN 40717 hdmaprnlem16N 40721 |
Copyright terms: Public domain | W3C validator |