Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Visualization version   GIF version

Theorem lsatlspsn 38975
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
lsatlspsn.w (𝜑𝑊 ∈ LMod)
lsatlspsn.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lsatlspsn (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eqid 2735 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
3 sneq 4641 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
43fveq2d 6911 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
54rspceeqv 3645 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
61, 2, 5sylancl 586 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
7 lsatlspsn.w . . 3 (𝜑𝑊 ∈ LMod)
8 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
9 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lsatset.z . . . 4 0 = (0g𝑊)
11 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
128, 9, 10, 11islsat 38973 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
137, 12syl 17 . 2 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
146, 13mpbird 257 1 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  cdif 3960  {csn 4631  cfv 6563  Basecbs 17245  0gc0g 17486  LModclmod 20875  LSpanclspn 20987  LSAtomsclsa 38956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-lsatoms 38958
This theorem is referenced by:  lsatspn0  38982  dvh4dimlem  41426  dochsnshp  41436  lclkrlem2a  41490  lclkrlem2c  41492  lclkrlem2e  41494  lcfrlem20  41545  mapdrvallem2  41628  mapdpglem20  41674  mapdpglem30a  41678  mapdpglem30b  41679  hdmaprnlem3eN  41841  hdmaprnlem16N  41845
  Copyright terms: Public domain W3C validator