| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version | ||
| Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
| 3 | sneq 4599 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 4 | 3 | fveq2d 6862 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
| 5 | 4 | rspceeqv 3611 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 6 | 1, 2, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 12 | 8, 9, 10, 11 | islsat 38984 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 {csn 4589 ‘cfv 6511 Basecbs 17179 0gc0g 17402 LModclmod 20766 LSpanclspn 20877 LSAtomsclsa 38967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-lsatoms 38969 |
| This theorem is referenced by: lsatspn0 38993 dvh4dimlem 41437 dochsnshp 41447 lclkrlem2a 41501 lclkrlem2c 41503 lclkrlem2e 41505 lcfrlem20 41556 mapdrvallem2 41639 mapdpglem20 41685 mapdpglem30a 41689 mapdpglem30b 41690 hdmaprnlem3eN 41852 hdmaprnlem16N 41856 |
| Copyright terms: Public domain | W3C validator |