| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version | ||
| Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatset.z | ⊢ 0 = (0g‘𝑊) |
| lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
| 3 | sneq 4586 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 4 | 3 | fveq2d 6826 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
| 5 | 4 | rspceeqv 3600 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 6 | 1, 2, 5 | sylancl 586 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
| 7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 12 | 8, 9, 10, 11 | islsat 39029 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3899 {csn 4576 ‘cfv 6481 Basecbs 17117 0gc0g 17340 LModclmod 20791 LSpanclspn 20902 LSAtomsclsa 39012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-lsatoms 39014 |
| This theorem is referenced by: lsatspn0 39038 dvh4dimlem 41481 dochsnshp 41491 lclkrlem2a 41545 lclkrlem2c 41547 lclkrlem2e 41549 lcfrlem20 41600 mapdrvallem2 41683 mapdpglem20 41729 mapdpglem30a 41733 mapdpglem30b 41734 hdmaprnlem3eN 41896 hdmaprnlem16N 41900 |
| Copyright terms: Public domain | W3C validator |