Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn | Structured version Visualization version GIF version |
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatset.z | ⊢ 0 = (0g‘𝑊) |
lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatlspsn.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsatlspsn.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lsatlspsn | ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatlspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | eqid 2738 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
3 | sneq 4568 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
4 | 3 | fveq2d 6760 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
5 | 4 | rspceeqv 3567 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
6 | 1, 2, 5 | sylancl 585 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
7 | lsatlspsn.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
9 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
11 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
12 | 8, 9, 10, 11 | islsat 36932 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
14 | 6, 13 | mpbird 256 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LModclmod 20038 LSpanclspn 20148 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-lsatoms 36917 |
This theorem is referenced by: lsatspn0 36941 dvh4dimlem 39384 dochsnshp 39394 lclkrlem2a 39448 lclkrlem2c 39450 lclkrlem2e 39452 lcfrlem20 39503 mapdrvallem2 39586 mapdpglem20 39632 mapdpglem30a 39636 mapdpglem30b 39637 hdmaprnlem3eN 39799 hdmaprnlem16N 39803 |
Copyright terms: Public domain | W3C validator |