Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Visualization version   GIF version

Theorem lsatlspsn 39112
Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
lsatlspsn.w (𝜑𝑊 ∈ LMod)
lsatlspsn.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lsatlspsn (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eqid 2733 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
3 sneq 4585 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
43fveq2d 6832 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
54rspceeqv 3596 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
61, 2, 5sylancl 586 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
7 lsatlspsn.w . . 3 (𝜑𝑊 ∈ LMod)
8 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
9 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lsatset.z . . . 4 0 = (0g𝑊)
11 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
128, 9, 10, 11islsat 39110 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
137, 12syl 17 . 2 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
146, 13mpbird 257 1 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057  cdif 3895  {csn 4575  cfv 6486  Basecbs 17122  0gc0g 17345  LModclmod 20795  LSpanclspn 20906  LSAtomsclsa 39093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-lsatoms 39095
This theorem is referenced by:  lsatspn0  39119  dvh4dimlem  41562  dochsnshp  41572  lclkrlem2a  41626  lclkrlem2c  41628  lclkrlem2e  41630  lcfrlem20  41681  mapdrvallem2  41764  mapdpglem20  41810  mapdpglem30a  41814  mapdpglem30b  41815  hdmaprnlem3eN  41977  hdmaprnlem16N  41981
  Copyright terms: Public domain W3C validator