MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Structured version   Visualization version   GIF version

Theorem isnsg3 19040
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
isnsg3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 19038 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
3 isnsg3.2 . . . . . 6 + = (+g𝐺)
4 isnsg3.3 . . . . . 6 = (-g𝐺)
52, 3, 4nsgconj 19039 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋𝑦𝑆) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
653expb 1121 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥𝑋𝑦𝑆)) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
76ralrimivva 3201 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
81, 7jca 513 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
9 simpl 484 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 19011 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1110ad2antrr 725 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp)
12 simprll 778 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧𝑋)
13 eqid 2733 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
14 eqid 2733 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
152, 3, 13, 14grplinv 18874 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1611, 12, 15syl2anc 585 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1716oveq1d 7424 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
182, 14grpinvcl 18872 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
1911, 12, 18syl2anc 585 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑋)
20 simprlr 779 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤𝑋)
212, 3grpass 18828 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
2211, 19, 12, 20, 21syl13anc 1373 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
232, 3, 13grplid 18852 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
2411, 20, 23syl2anc 585 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g𝐺) + 𝑤) = 𝑤)
2517, 22, 243eqtr3d 2781 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
2625oveq1d 7424 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 ((invg𝐺)‘𝑧)))
272, 3, 4, 14, 11, 20, 12grpsubinv 18896 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
2826, 27eqtrd 2773 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
29 simprr 772 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
30 simplr 768 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
31 oveq1 7416 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg𝐺)‘𝑧) + 𝑦))
32 id 22 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → 𝑥 = ((invg𝐺)‘𝑧))
3331, 32oveq12d 7427 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑥 + 𝑦) 𝑥) = ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)))
3433eleq1d 2819 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (((𝑥 + 𝑦) 𝑥) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆))
35 oveq2 7417 . . . . . . . . . 10 (𝑦 = (𝑧 + 𝑤) → (((invg𝐺)‘𝑧) + 𝑦) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
3635oveq1d 7424 . . . . . . . . 9 (𝑦 = (𝑧 + 𝑤) → ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) = ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)))
3736eleq1d 2819 . . . . . . . 8 (𝑦 = (𝑧 + 𝑤) → (((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆))
3834, 37rspc2va 3624 . . . . . . 7 (((((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
3919, 29, 30, 38syl21anc 837 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
4028, 39eqeltrrd 2835 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆)
4140expr 458 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
4241ralrimivva 3201 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
432, 3isnsg2 19036 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)))
449, 42, 43sylanbrc 584 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
458, 44impbii 208 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820  -gcsg 18821  SubGrpcsubg 19000  NrmSGrpcnsg 19001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-nsg 19004
This theorem is referenced by:  nsgacs  19042  0nsg  19049  nsgid  19050  ghmnsgima  19116  ghmnsgpreima  19117  cntrsubgnsg  19207  clsnsg  23614
  Copyright terms: Public domain W3C validator