Step | Hyp | Ref
| Expression |
1 | | nsgsubg 18701 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
2 | | isnsg3.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
3 | | isnsg3.2 |
. . . . . 6
⊢ + =
(+g‘𝐺) |
4 | | isnsg3.3 |
. . . . . 6
⊢ − =
(-g‘𝐺) |
5 | 2, 3, 4 | nsgconj 18702 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) |
6 | 5 | 3expb 1118 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) |
7 | 6 | ralrimivva 3114 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) |
8 | 1, 7 | jca 511 |
. 2
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) |
9 | | simpl 482 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
10 | | subgrcl 18675 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
11 | 10 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp) |
12 | | simprll 775 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧 ∈ 𝑋) |
13 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
14 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(invg‘𝐺) = (invg‘𝐺) |
15 | 2, 3, 13, 14 | grplinv 18543 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
16 | 11, 12, 15 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
17 | 16 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
18 | 2, 14 | grpinvcl 18542 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
19 | 11, 12, 18 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
20 | | simprlr 776 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤 ∈ 𝑋) |
21 | 2, 3 | grpass 18501 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
22 | 11, 19, 12, 20, 21 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg‘𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
23 | 2, 3, 13 | grplid 18524 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺) + 𝑤) = 𝑤) |
24 | 11, 20, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g‘𝐺) + 𝑤) = 𝑤) |
25 | 17, 22, 24 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤) |
26 | 25 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧)) = (𝑤 −
((invg‘𝐺)‘𝑧))) |
27 | 2, 3, 4, 14, 11, 20, 12 | grpsubinv 18563 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 −
((invg‘𝐺)‘𝑧)) = (𝑤 + 𝑧)) |
28 | 26, 27 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧)) = (𝑤 + 𝑧)) |
29 | | simprr 769 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
30 | | simplr 765 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) |
31 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg‘𝐺)‘𝑧) + 𝑦)) |
32 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → 𝑥 = ((invg‘𝐺)‘𝑧)) |
33 | 31, 32 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → ((𝑥 + 𝑦) − 𝑥) = ((((invg‘𝐺)‘𝑧) + 𝑦) −
((invg‘𝐺)‘𝑧))) |
34 | 33 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = ((invg‘𝐺)‘𝑧) → (((𝑥 + 𝑦) − 𝑥) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + 𝑦) −
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
35 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑧 + 𝑤) → (((invg‘𝐺)‘𝑧) + 𝑦) = (((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤))) |
36 | 35 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 + 𝑤) → ((((invg‘𝐺)‘𝑧) + 𝑦) −
((invg‘𝐺)‘𝑧)) = ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧))) |
37 | 36 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = (𝑧 + 𝑤) → (((((invg‘𝐺)‘𝑧) + 𝑦) −
((invg‘𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
38 | 34, 37 | rspc2va 3563 |
. . . . . . 7
⊢
(((((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) → ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧)) ∈ 𝑆) |
39 | 19, 29, 30, 38 | syl21anc 834 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg‘𝐺)‘𝑧) + (𝑧 + 𝑤)) −
((invg‘𝐺)‘𝑧)) ∈ 𝑆) |
40 | 28, 39 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ ((𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆) |
41 | 40 | expr 456 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)) |
42 | 41 | ralrimivva 3114 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)) |
43 | 2, 3 | isnsg2 18699 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))) |
44 | 9, 42, 43 | sylanbrc 582 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) |
45 | 8, 44 | impbii 208 |
1
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) |