MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Structured version   Visualization version   GIF version

Theorem isnsg3 18295
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
isnsg3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 18293 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
3 isnsg3.2 . . . . . 6 + = (+g𝐺)
4 isnsg3.3 . . . . . 6 = (-g𝐺)
52, 3, 4nsgconj 18294 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋𝑦𝑆) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
653expb 1116 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥𝑋𝑦𝑆)) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
76ralrimivva 3191 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
81, 7jca 514 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
9 simpl 485 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 18267 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1110ad2antrr 724 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp)
12 simprll 777 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧𝑋)
13 eqid 2821 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
14 eqid 2821 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
152, 3, 13, 14grplinv 18135 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1611, 12, 15syl2anc 586 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1716oveq1d 7157 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
182, 14grpinvcl 18134 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
1911, 12, 18syl2anc 586 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑋)
20 simprlr 778 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤𝑋)
212, 3grpass 18095 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
2211, 19, 12, 20, 21syl13anc 1368 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
232, 3, 13grplid 18116 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
2411, 20, 23syl2anc 586 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g𝐺) + 𝑤) = 𝑤)
2517, 22, 243eqtr3d 2864 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
2625oveq1d 7157 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 ((invg𝐺)‘𝑧)))
272, 3, 4, 14, 11, 20, 12grpsubinv 18155 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
2826, 27eqtrd 2856 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
29 simprr 771 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
30 simplr 767 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
31 oveq1 7149 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg𝐺)‘𝑧) + 𝑦))
32 id 22 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → 𝑥 = ((invg𝐺)‘𝑧))
3331, 32oveq12d 7160 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑥 + 𝑦) 𝑥) = ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)))
3433eleq1d 2897 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (((𝑥 + 𝑦) 𝑥) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆))
35 oveq2 7150 . . . . . . . . . 10 (𝑦 = (𝑧 + 𝑤) → (((invg𝐺)‘𝑧) + 𝑦) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
3635oveq1d 7157 . . . . . . . . 9 (𝑦 = (𝑧 + 𝑤) → ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) = ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)))
3736eleq1d 2897 . . . . . . . 8 (𝑦 = (𝑧 + 𝑤) → (((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆))
3834, 37rspc2va 3626 . . . . . . 7 (((((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
3919, 29, 30, 38syl21anc 835 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
4028, 39eqeltrrd 2914 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆)
4140expr 459 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
4241ralrimivva 3191 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
432, 3isnsg2 18291 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)))
449, 42, 43sylanbrc 585 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
458, 44impbii 211 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cfv 6341  (class class class)co 7142  Basecbs 16466  +gcplusg 16548  0gc0g 16696  Grpcgrp 18086  invgcminusg 18087  -gcsg 18088  SubGrpcsubg 18256  NrmSGrpcnsg 18257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-1st 7675  df-2nd 7676  df-0g 16698  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-grp 18089  df-minusg 18090  df-sbg 18091  df-subg 18259  df-nsg 18260
This theorem is referenced by:  nsgacs  18297  0nsg  18304  nsgid  18305  ghmnsgima  18365  ghmnsgpreima  18366  cntrsubgnsg  18454  clsnsg  22701
  Copyright terms: Public domain W3C validator