Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrgrim Structured version   Visualization version   GIF version

Theorem isubgrgrim 47781
Description: Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
isubgrgrim.v 𝑉 = (Vtx‘𝐺)
isubgrgrim.w 𝑊 = (Vtx‘𝐻)
isubgrgrim.i 𝐼 = (iEdg‘𝐺)
isubgrgrim.j 𝐽 = (iEdg‘𝐻)
isubgrgrim.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
isubgrgrim.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
isubgrgrim (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑓,𝐺,𝑔,𝑖   𝑥,𝐺   𝑓,𝐻,𝑔,𝑖   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑇,𝑓,𝑔,𝑖   𝑈,𝑓,𝑔,𝑖   𝑓,𝑉,𝑔,𝑖   𝑥,𝑉   𝑓,𝑊,𝑔,𝑖   𝑥,𝑊   𝑖,𝐾   𝑖,𝐿
Allowed substitution hints:   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑓,𝑔,𝑖)   𝐽(𝑓,𝑔,𝑖)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)

Proof of Theorem isubgrgrim
StepHypRef Expression
1 ovex 7481 . . . 4 (𝐺 ISubGr 𝑁) ∈ V
2 ovex 7481 . . . 4 (𝐻 ISubGr 𝑀) ∈ V
31, 2pm3.2i 470 . . 3 ((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V)
4 eqid 2740 . . . 4 (Vtx‘(𝐺 ISubGr 𝑁)) = (Vtx‘(𝐺 ISubGr 𝑁))
5 eqid 2740 . . . 4 (Vtx‘(𝐻 ISubGr 𝑀)) = (Vtx‘(𝐻 ISubGr 𝑀))
6 eqid 2740 . . . 4 (iEdg‘(𝐺 ISubGr 𝑁)) = (iEdg‘(𝐺 ISubGr 𝑁))
7 eqid 2740 . . . 4 (iEdg‘(𝐻 ISubGr 𝑀)) = (iEdg‘(𝐻 ISubGr 𝑀))
84, 5, 6, 7dfgric2 47768 . . 3 (((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))))))
93, 8mp1i 13 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))))))
10 eqidd 2741 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → 𝑓 = 𝑓)
11 isubgrgrim.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1211isubgrvtx 47737 . . . . . 6 ((𝐺𝑈𝑁𝑉) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁)
1312ad2ant2r 746 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁)
14 isubgrgrim.w . . . . . . 7 𝑊 = (Vtx‘𝐻)
1514isubgrvtx 47737 . . . . . 6 ((𝐻𝑇𝑀𝑊) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀)
1615ad2ant2l 745 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀)
1710, 13, 16f1oeq123d 6856 . . . 4 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ↔ 𝑓:𝑁1-1-onto𝑀))
18 eqidd 2741 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → 𝑔 = 𝑔)
19 isubgrgrim.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2011, 19isubgriedg 47735 . . . . . . . . . . 11 ((𝐺𝑈𝑁𝑉) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
2120ad2ant2r 746 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
2221dmeqd 5930 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
23 ssrab2 4103 . . . . . . . . . . 11 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼
2423a1i 11 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼)
25 ssdmres 6042 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼 ↔ dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
2624, 25sylib 218 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
27 isubgrgrim.k . . . . . . . . . . 11 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
2827eqcomi 2749 . . . . . . . . . 10 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} = 𝐾
2928a1i 11 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} = 𝐾)
3022, 26, 293eqtrd 2784 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = 𝐾)
31 isubgrgrim.j . . . . . . . . . . . 12 𝐽 = (iEdg‘𝐻)
3214, 31isubgriedg 47735 . . . . . . . . . . 11 ((𝐻𝑇𝑀𝑊) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
3332ad2ant2l 745 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
3433dmeqd 5930 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
35 ssrab2 4103 . . . . . . . . . . 11 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽
3635a1i 11 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽)
37 ssdmres 6042 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽 ↔ dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
3836, 37sylib 218 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
39 isubgrgrim.l . . . . . . . . . . 11 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
4039eqcomi 2749 . . . . . . . . . 10 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} = 𝐿
4140a1i 11 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} = 𝐿)
4234, 38, 413eqtrd 2784 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = 𝐿)
4318, 30, 42f1oeq123d 6856 . . . . . . 7 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ↔ 𝑔:𝐾1-1-onto𝐿))
4443anbi1d 630 . . . . . 6 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))))
4529reseq2d 6009 . . . . . . . . . . . . . 14 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = (𝐼𝐾))
4621, 45eqtrd 2780 . . . . . . . . . . . . 13 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼𝐾))
4746fveq1d 6922 . . . . . . . . . . . 12 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖) = ((𝐼𝐾)‘𝑖))
4847imaeq2d 6089 . . . . . . . . . . 11 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = (𝑓 “ ((𝐼𝐾)‘𝑖)))
4940reseq2i 6006 . . . . . . . . . . . . 13 (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = (𝐽𝐿)
5033, 49eqtrdi 2796 . . . . . . . . . . . 12 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽𝐿))
5150fveq1d 6922 . . . . . . . . . . 11 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)))
5248, 51eqeq12d 2756 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
5330, 52raleqbidv 3354 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
5453adantr 480 . . . . . . . 8 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
55 fvres 6939 . . . . . . . . . . . . 13 (𝑖𝐾 → ((𝐼𝐾)‘𝑖) = (𝐼𝑖))
5655adantl 481 . . . . . . . . . . . 12 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑖𝐾) → ((𝐼𝐾)‘𝑖) = (𝐼𝑖))
5756imaeq2d 6089 . . . . . . . . . . 11 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑖𝐾) → (𝑓 “ ((𝐼𝐾)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
5857adantlr 714 . . . . . . . . . 10 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → (𝑓 “ ((𝐼𝐾)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
59 f1of 6862 . . . . . . . . . . . . 13 (𝑔:𝐾1-1-onto𝐿𝑔:𝐾𝐿)
6059adantl 481 . . . . . . . . . . . 12 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → 𝑔:𝐾𝐿)
6160ffvelcdmda 7118 . . . . . . . . . . 11 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → (𝑔𝑖) ∈ 𝐿)
6261fvresd 6940 . . . . . . . . . 10 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → ((𝐽𝐿)‘(𝑔𝑖)) = (𝐽‘(𝑔𝑖)))
6358, 62eqeq12d 2756 . . . . . . . . 9 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → ((𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6463ralbidva 3182 . . . . . . . 8 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6554, 64bitrd 279 . . . . . . 7 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6665pm5.32da 578 . . . . . 6 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6744, 66bitrd 279 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6867exbidv 1920 . . . 4 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6917, 68anbi12d 631 . . 3 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))) ↔ (𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
7069exbidv 1920 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
719, 70bitrd 279 1 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976   class class class wbr 5166  dom cdm 5700  cres 5702  cima 5703  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032   ISubGr cisubgr 47732  𝑔𝑟 cgric 47746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-isubgr 47733  df-grim 47748  df-gric 47751
This theorem is referenced by:  uhgrimisgrgric  47783  clnbgrisubgrgrim  47784
  Copyright terms: Public domain W3C validator