Proof of Theorem isubgrgrim
Step | Hyp | Ref
| Expression |
1 | | ovex 7481 |
. . . 4
⊢ (𝐺 ISubGr 𝑁) ∈ V |
2 | | ovex 7481 |
. . . 4
⊢ (𝐻 ISubGr 𝑀) ∈ V |
3 | 1, 2 | pm3.2i 470 |
. . 3
⊢ ((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V) |
4 | | eqid 2740 |
. . . 4
⊢
(Vtx‘(𝐺 ISubGr
𝑁)) = (Vtx‘(𝐺 ISubGr 𝑁)) |
5 | | eqid 2740 |
. . . 4
⊢
(Vtx‘(𝐻 ISubGr
𝑀)) = (Vtx‘(𝐻 ISubGr 𝑀)) |
6 | | eqid 2740 |
. . . 4
⊢
(iEdg‘(𝐺
ISubGr 𝑁)) =
(iEdg‘(𝐺 ISubGr 𝑁)) |
7 | | eqid 2740 |
. . . 4
⊢
(iEdg‘(𝐻
ISubGr 𝑀)) =
(iEdg‘(𝐻 ISubGr 𝑀)) |
8 | 4, 5, 6, 7 | dfgric2 47768 |
. . 3
⊢ (((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟
(𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)))))) |
9 | 3, 8 | mp1i 13 |
. 2
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟
(𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)))))) |
10 | | eqidd 2741 |
. . . . 5
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → 𝑓 = 𝑓) |
11 | | isubgrgrim.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
12 | 11 | isubgrvtx 47737 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁) |
13 | 12 | ad2ant2r 746 |
. . . . 5
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁) |
14 | | isubgrgrim.w |
. . . . . . 7
⊢ 𝑊 = (Vtx‘𝐻) |
15 | 14 | isubgrvtx 47737 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀) |
16 | 15 | ad2ant2l 745 |
. . . . 5
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀) |
17 | 10, 13, 16 | f1oeq123d 6856 |
. . . 4
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ↔ 𝑓:𝑁–1-1-onto→𝑀)) |
18 | | eqidd 2741 |
. . . . . . . 8
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → 𝑔 = 𝑔) |
19 | | isubgrgrim.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (iEdg‘𝐺) |
20 | 11, 19 | isubgriedg 47735 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁})) |
21 | 20 | ad2ant2r 746 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁})) |
22 | 21 | dmeqd 5930 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁})) |
23 | | ssrab2 4103 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} ⊆ dom 𝐼 |
24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} ⊆ dom 𝐼) |
25 | | ssdmres 6042 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} ⊆ dom 𝐼 ↔ dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) |
26 | 24, 25 | sylib 218 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) |
27 | | isubgrgrim.k |
. . . . . . . . . . 11
⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
28 | 27 | eqcomi 2749 |
. . . . . . . . . 10
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} = 𝐾 |
29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} = 𝐾) |
30 | 22, 26, 29 | 3eqtrd 2784 |
. . . . . . . 8
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = 𝐾) |
31 | | isubgrgrim.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (iEdg‘𝐻) |
32 | 14, 31 | isubgriedg 47735 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀})) |
33 | 32 | ad2ant2l 745 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀})) |
34 | 33 | dmeqd 5930 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀})) |
35 | | ssrab2 4103 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⊆ dom 𝐽 |
36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⊆ dom 𝐽) |
37 | | ssdmres 6042 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⊆ dom 𝐽 ↔ dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) |
38 | 36, 37 | sylib 218 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) |
39 | | isubgrgrim.l |
. . . . . . . . . . 11
⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
40 | 39 | eqcomi 2749 |
. . . . . . . . . 10
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} = 𝐿 |
41 | 40 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} = 𝐿) |
42 | 34, 38, 41 | 3eqtrd 2784 |
. . . . . . . 8
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = 𝐿) |
43 | 18, 30, 42 | f1oeq123d 6856 |
. . . . . . 7
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ↔ 𝑔:𝐾–1-1-onto→𝐿)) |
44 | 43 | anbi1d 630 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖))) ↔ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖))))) |
45 | 29 | reseq2d 6009 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁}) = (𝐼 ↾ 𝐾)) |
46 | 21, 45 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ 𝐾)) |
47 | 46 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖) = ((𝐼 ↾ 𝐾)‘𝑖)) |
48 | 47 | imaeq2d 6089 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖))) |
49 | 40 | reseq2i 6006 |
. . . . . . . . . . . . 13
⊢ (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀}) = (𝐽 ↾ 𝐿) |
50 | 33, 49 | eqtrdi 2796 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ 𝐿)) |
51 | 50 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖))) |
52 | 48, 51 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)) ↔ (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)))) |
53 | 30, 52 | raleqbidv 3354 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ 𝐾 (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)))) |
54 | 53 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ 𝐾 (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)))) |
55 | | fvres 6939 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝐾 → ((𝐼 ↾ 𝐾)‘𝑖) = (𝐼‘𝑖)) |
56 | 55 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑖 ∈ 𝐾) → ((𝐼 ↾ 𝐾)‘𝑖) = (𝐼‘𝑖)) |
57 | 56 | imaeq2d 6089 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑖 ∈ 𝐾) → (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) |
58 | 57 | adantlr 714 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ 𝑖 ∈ 𝐾) → (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = (𝑓 “ (𝐼‘𝑖))) |
59 | | f1of 6862 |
. . . . . . . . . . . . 13
⊢ (𝑔:𝐾–1-1-onto→𝐿 → 𝑔:𝐾⟶𝐿) |
60 | 59 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) → 𝑔:𝐾⟶𝐿) |
61 | 60 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ 𝑖 ∈ 𝐾) → (𝑔‘𝑖) ∈ 𝐿) |
62 | 61 | fvresd 6940 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ 𝑖 ∈ 𝐾) → ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)) = (𝐽‘(𝑔‘𝑖))) |
63 | 58, 62 | eqeq12d 2756 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ 𝑖 ∈ 𝐾) → ((𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)) ↔ (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
64 | 63 | ralbidva 3182 |
. . . . . . . 8
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) → (∀𝑖 ∈ 𝐾 (𝑓 “ ((𝐼 ↾ 𝐾)‘𝑖)) = ((𝐽 ↾ 𝐿)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
65 | 54, 64 | bitrd 279 |
. . . . . . 7
⊢ ((((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) ∧ 𝑔:𝐾–1-1-onto→𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))) |
66 | 65 | pm5.32da 578 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖))) ↔ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
67 | 44, 66 | bitrd 279 |
. . . . 5
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖))) ↔ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
68 | 67 | exbidv 1920 |
. . . 4
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖))) ↔ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) |
69 | 17, 68 | anbi12d 631 |
. . 3
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)))) ↔ (𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
70 | 69 | exbidv 1920 |
. 2
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → (∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom
(iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔‘𝑖)))) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |
71 | 9, 70 | bitrd 279 |
1
⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟
(𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) |