Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrgrim Structured version   Visualization version   GIF version

Theorem isubgrgrim 47897
Description: Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025.)
Hypotheses
Ref Expression
isubgrgrim.v 𝑉 = (Vtx‘𝐺)
isubgrgrim.w 𝑊 = (Vtx‘𝐻)
isubgrgrim.i 𝐼 = (iEdg‘𝐺)
isubgrgrim.j 𝐽 = (iEdg‘𝐻)
isubgrgrim.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
isubgrgrim.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
isubgrgrim (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝑓,𝐺,𝑔,𝑖   𝑥,𝐺   𝑓,𝐻,𝑔,𝑖   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑓,𝑀,𝑔,𝑖   𝑥,𝑀   𝑓,𝑁,𝑔,𝑖   𝑥,𝑁   𝑇,𝑓,𝑔,𝑖   𝑈,𝑓,𝑔,𝑖   𝑓,𝑉,𝑔,𝑖   𝑥,𝑉   𝑓,𝑊,𝑔,𝑖   𝑥,𝑊   𝑖,𝐾   𝑖,𝐿
Allowed substitution hints:   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑓,𝑔,𝑖)   𝐽(𝑓,𝑔,𝑖)   𝐾(𝑥,𝑓,𝑔)   𝐿(𝑥,𝑓,𝑔)

Proof of Theorem isubgrgrim
StepHypRef Expression
1 ovex 7464 . . . 4 (𝐺 ISubGr 𝑁) ∈ V
2 ovex 7464 . . . 4 (𝐻 ISubGr 𝑀) ∈ V
31, 2pm3.2i 470 . . 3 ((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V)
4 eqid 2737 . . . 4 (Vtx‘(𝐺 ISubGr 𝑁)) = (Vtx‘(𝐺 ISubGr 𝑁))
5 eqid 2737 . . . 4 (Vtx‘(𝐻 ISubGr 𝑀)) = (Vtx‘(𝐻 ISubGr 𝑀))
6 eqid 2737 . . . 4 (iEdg‘(𝐺 ISubGr 𝑁)) = (iEdg‘(𝐺 ISubGr 𝑁))
7 eqid 2737 . . . 4 (iEdg‘(𝐻 ISubGr 𝑀)) = (iEdg‘(𝐻 ISubGr 𝑀))
84, 5, 6, 7dfgric2 47884 . . 3 (((𝐺 ISubGr 𝑁) ∈ V ∧ (𝐻 ISubGr 𝑀) ∈ V) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))))))
93, 8mp1i 13 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))))))
10 eqidd 2738 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → 𝑓 = 𝑓)
11 isubgrgrim.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1211isubgrvtx 47853 . . . . . 6 ((𝐺𝑈𝑁𝑉) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁)
1312ad2ant2r 747 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (Vtx‘(𝐺 ISubGr 𝑁)) = 𝑁)
14 isubgrgrim.w . . . . . . 7 𝑊 = (Vtx‘𝐻)
1514isubgrvtx 47853 . . . . . 6 ((𝐻𝑇𝑀𝑊) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀)
1615ad2ant2l 746 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (Vtx‘(𝐻 ISubGr 𝑀)) = 𝑀)
1710, 13, 16f1oeq123d 6842 . . . 4 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ↔ 𝑓:𝑁1-1-onto𝑀))
18 eqidd 2738 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → 𝑔 = 𝑔)
19 isubgrgrim.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2011, 19isubgriedg 47849 . . . . . . . . . . 11 ((𝐺𝑈𝑁𝑉) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
2120ad2ant2r 747 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
2221dmeqd 5916 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}))
23 ssrab2 4080 . . . . . . . . . . 11 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼
2423a1i 11 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼)
25 ssdmres 6031 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} ⊆ dom 𝐼 ↔ dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
2624, 25sylib 218 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁})
27 isubgrgrim.k . . . . . . . . . . 11 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
2827eqcomi 2746 . . . . . . . . . 10 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} = 𝐾
2928a1i 11 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁} = 𝐾)
3022, 26, 293eqtrd 2781 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐺 ISubGr 𝑁)) = 𝐾)
31 isubgrgrim.j . . . . . . . . . . . 12 𝐽 = (iEdg‘𝐻)
3214, 31isubgriedg 47849 . . . . . . . . . . 11 ((𝐻𝑇𝑀𝑊) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
3332ad2ant2l 746 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
3433dmeqd 5916 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}))
35 ssrab2 4080 . . . . . . . . . . 11 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽
3635a1i 11 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽)
37 ssdmres 6031 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} ⊆ dom 𝐽 ↔ dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
3836, 37sylib 218 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀})
39 isubgrgrim.l . . . . . . . . . . 11 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
4039eqcomi 2746 . . . . . . . . . 10 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} = 𝐿
4140a1i 11 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀} = 𝐿)
4234, 38, 413eqtrd 2781 . . . . . . . 8 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → dom (iEdg‘(𝐻 ISubGr 𝑀)) = 𝐿)
4318, 30, 42f1oeq123d 6842 . . . . . . 7 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ↔ 𝑔:𝐾1-1-onto𝐿))
4443anbi1d 631 . . . . . 6 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))))
4529reseq2d 5997 . . . . . . . . . . . . . 14 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝐼 ↾ {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}) = (𝐼𝐾))
4621, 45eqtrd 2777 . . . . . . . . . . . . 13 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐺 ISubGr 𝑁)) = (𝐼𝐾))
4746fveq1d 6908 . . . . . . . . . . . 12 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖) = ((𝐼𝐾)‘𝑖))
4847imaeq2d 6078 . . . . . . . . . . 11 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = (𝑓 “ ((𝐼𝐾)‘𝑖)))
4940reseq2i 5994 . . . . . . . . . . . . 13 (𝐽 ↾ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}) = (𝐽𝐿)
5033, 49eqtrdi 2793 . . . . . . . . . . . 12 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (iEdg‘(𝐻 ISubGr 𝑀)) = (𝐽𝐿))
5150fveq1d 6908 . . . . . . . . . . 11 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)))
5248, 51eqeq12d 2753 . . . . . . . . . 10 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
5330, 52raleqbidv 3346 . . . . . . . . 9 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
5453adantr 480 . . . . . . . 8 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖))))
55 fvres 6925 . . . . . . . . . . . . 13 (𝑖𝐾 → ((𝐼𝐾)‘𝑖) = (𝐼𝑖))
5655adantl 481 . . . . . . . . . . . 12 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑖𝐾) → ((𝐼𝐾)‘𝑖) = (𝐼𝑖))
5756imaeq2d 6078 . . . . . . . . . . 11 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑖𝐾) → (𝑓 “ ((𝐼𝐾)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
5857adantlr 715 . . . . . . . . . 10 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → (𝑓 “ ((𝐼𝐾)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
59 f1of 6848 . . . . . . . . . . . . 13 (𝑔:𝐾1-1-onto𝐿𝑔:𝐾𝐿)
6059adantl 481 . . . . . . . . . . . 12 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → 𝑔:𝐾𝐿)
6160ffvelcdmda 7104 . . . . . . . . . . 11 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → (𝑔𝑖) ∈ 𝐿)
6261fvresd 6926 . . . . . . . . . 10 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → ((𝐽𝐿)‘(𝑔𝑖)) = (𝐽‘(𝑔𝑖)))
6358, 62eqeq12d 2753 . . . . . . . . 9 (((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) ∧ 𝑖𝐾) → ((𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6463ralbidva 3176 . . . . . . . 8 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖𝐾 (𝑓 “ ((𝐼𝐾)‘𝑖)) = ((𝐽𝐿)‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6554, 64bitrd 279 . . . . . . 7 ((((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) ∧ 𝑔:𝐾1-1-onto𝐿) → (∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)) ↔ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
6665pm5.32da 579 . . . . . 6 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6744, 66bitrd 279 . . . . 5 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6867exbidv 1921 . . . 4 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
6917, 68anbi12d 632 . . 3 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))) ↔ (𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
7069exbidv 1921 . 2 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → (∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝑁))–1-1-onto→(Vtx‘(𝐻 ISubGr 𝑀)) ∧ ∃𝑔(𝑔:dom (iEdg‘(𝐺 ISubGr 𝑁))–1-1-onto→dom (iEdg‘(𝐻 ISubGr 𝑀)) ∧ ∀𝑖 ∈ dom (iEdg‘(𝐺 ISubGr 𝑁))(𝑓 “ ((iEdg‘(𝐺 ISubGr 𝑁))‘𝑖)) = ((iEdg‘(𝐻 ISubGr 𝑀))‘(𝑔𝑖)))) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
719, 70bitrd 279 1 (((𝐺𝑈𝐻𝑇) ∧ (𝑁𝑉𝑀𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  dom cdm 5685  cres 5687  cima 5688  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  iEdgciedg 29014   ISubGr cisubgr 47846  𝑔𝑟 cgric 47862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-1o 8506  df-map 8868  df-vtx 29015  df-iedg 29016  df-isubgr 47847  df-grim 47864  df-gric 47867
This theorem is referenced by:  uhgrimisgrgric  47899  clnbgrisubgrgrim  47900
  Copyright terms: Public domain W3C validator