| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrvtx | Structured version Visualization version GIF version | ||
| Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.) |
| Ref | Expression |
|---|---|
| isubgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrvtx | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isisubgr 47847 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) = 〈𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})〉) |
| 4 | 3 | fveq2d 6830 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘〈𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})〉)) |
| 5 | 1 | fvexi 6840 | . . . 4 ⊢ 𝑉 ∈ V |
| 6 | 5 | ssex 5263 | . . 3 ⊢ (𝑆 ⊆ 𝑉 → 𝑆 ∈ V) |
| 7 | fvexd 6841 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐺) ∈ V) | |
| 8 | 7 | resexd 5983 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V) |
| 9 | opvtxfv 28967 | . . 3 ⊢ ((𝑆 ∈ V ∧ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V) → (Vtx‘〈𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})〉) = 𝑆) | |
| 10 | 6, 8, 9 | syl2an2 686 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘〈𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})〉) = 𝑆) |
| 11 | 4, 10 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 〈cop 4585 dom cdm 5623 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28959 iEdgciedg 28960 ISubGr cisubgr 47845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-vtx 28961 df-isubgr 47846 |
| This theorem is referenced by: isubgruhgr 47853 isubgrsubgr 47854 isubgrgrim 47914 isubgr3stgr 47960 |
| Copyright terms: Public domain | W3C validator |