Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtx Structured version   Visualization version   GIF version

Theorem isubgrvtx 47992
Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrvtx ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)

Proof of Theorem isubgrvtx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isisubgr 47987 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩)
43fveq2d 6832 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩))
51fvexi 6842 . . . 4 𝑉 ∈ V
65ssex 5261 . . 3 (𝑆𝑉𝑆 ∈ V)
7 fvexd 6843 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐺) ∈ V)
87resexd 5981 . . 3 ((𝐺𝑊𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V)
9 opvtxfv 28984 . . 3 ((𝑆 ∈ V ∧ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
106, 8, 9syl2an2 686 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
114, 10eqtrd 2768 1 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898  cop 4581  dom cdm 5619  cres 5621  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  iEdgciedg 28977   ISubGr cisubgr 47985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-vtx 28978  df-isubgr 47986
This theorem is referenced by:  isubgruhgr  47993  isubgrsubgr  47994  isubgrgrim  48054  isubgr3stgr  48100
  Copyright terms: Public domain W3C validator