Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtx Structured version   Visualization version   GIF version

Theorem isubgrvtx 47880
Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrvtx ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)

Proof of Theorem isubgrvtx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isisubgr 47875 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩)
43fveq2d 6880 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩))
51fvexi 6890 . . . 4 𝑉 ∈ V
65ssex 5291 . . 3 (𝑆𝑉𝑆 ∈ V)
7 fvexd 6891 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐺) ∈ V)
87resexd 6015 . . 3 ((𝐺𝑊𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V)
9 opvtxfv 28983 . . 3 ((𝑆 ∈ V ∧ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
106, 8, 9syl2an2 686 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
114, 10eqtrd 2770 1 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  cop 4607  dom cdm 5654  cres 5656  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976   ISubGr cisubgr 47873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-vtx 28977  df-isubgr 47874
This theorem is referenced by:  isubgruhgr  47881  isubgrsubgr  47882  isubgrgrim  47942  isubgr3stgr  47987
  Copyright terms: Public domain W3C validator