Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtx Structured version   Visualization version   GIF version

Theorem isubgrvtx 47791
Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrvtx ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)

Proof of Theorem isubgrvtx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isisubgr 47786 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩)
43fveq2d 6911 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩))
51fvexi 6921 . . . 4 𝑉 ∈ V
65ssex 5327 . . 3 (𝑆𝑉𝑆 ∈ V)
7 fvexd 6922 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐺) ∈ V)
87resexd 6048 . . 3 ((𝐺𝑊𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V)
9 opvtxfv 29036 . . 3 ((𝑆 ∈ V ∧ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ∈ V) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
106, 8, 9syl2an2 686 . 2 ((𝐺𝑊𝑆𝑉) → (Vtx‘⟨𝑆, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟩) = 𝑆)
114, 10eqtrd 2775 1 ((𝐺𝑊𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  wss 3963  cop 4637  dom cdm 5689  cres 5691  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  iEdgciedg 29029   ISubGr cisubgr 47784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-vtx 29030  df-isubgr 47785
This theorem is referenced by:  isubgruhgr  47792  isubgrsubgr  47793  isubgrgrim  47835  isubgr3stgr  47878
  Copyright terms: Public domain W3C validator