Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgr Structured version   Visualization version   GIF version

Theorem isubgr3stgr 47967
Description: If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgr ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Distinct variable groups:   𝑦,𝐶   𝑥,𝐸,𝑦   𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgr
Dummy variables 𝑓 𝑔 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ USGraph)
2 simpr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝑉)
3 simpl 482 . . . . 5 (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁)
4 isubgr3stgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
5 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
6 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
7 isubgr3stgr.n . . . . . 6 𝑁 ∈ ℕ0
8 isubgr3stgr.s . . . . . 6 𝑆 = (StarGr‘𝑁)
9 isubgr3stgr.w . . . . . 6 𝑊 = (Vtx‘𝑆)
104, 5, 6, 7, 8, 9isubgr3stgrlem3 47960 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
111, 2, 3, 10syl2an3an 1424 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
124clnbgrssvtx 47825 . . . . . . . . . . . . . . . . 17 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
136, 12eqsstri 3990 . . . . . . . . . . . . . . . 16 𝐶𝑉
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑋𝑉𝐶𝑉)
1514anim2i 617 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
1615adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
174isubgrvtx 47860 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1816, 17syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1918eqcomd 2735 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶)))
2019f1oeq2d 6778 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2120biimpd 229 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2221adantrd 491 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2322imp 406 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊)
24 fvexd 6855 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V)
2524mptexd 7180 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) ∈ V)
26 isubgr3stgr.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
27 eqid 2729 . . . . . . . . 9 (Edg‘(𝐺 ISubGr 𝐶)) = (Edg‘(𝐺 ISubGr 𝐶))
28 eqid 2729 . . . . . . . . 9 (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))
294, 5, 6, 7, 8, 9, 26, 27, 28isubgr3stgrlem9 47966 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
30 f1oeq1 6770 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁))))
31 fveq1 6839 . . . . . . . . . . 11 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))
3231eqeq2d 2740 . . . . . . . . . 10 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3332ralbidv 3156 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3430, 33anbi12d 632 . . . . . . . 8 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))))
3525, 29, 34spcedv 3561 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))
3623, 35jca 511 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
3736ex 412 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3837eximdv 1917 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3911, 38mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
404isubgrusgr 47865 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
4115, 40syl 17 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
42 usgruspgr 29160 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph)
43 uspgrushgr 29157 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph)
4441, 42, 433syl 18 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph)
45 stgrusgra 47951 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
46 usgruspgr 29160 . . . . . . 7 ((StarGr‘𝑁) ∈ USGraph → (StarGr‘𝑁) ∈ USPGraph)
47 uspgrushgr 29157 . . . . . . 7 ((StarGr‘𝑁) ∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph)
4845, 46, 473syl 18 . . . . . 6 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USHGraph)
497, 48ax-mp 5 . . . . 5 (StarGr‘𝑁) ∈ USHGraph
50 eqid 2729 . . . . . 6 (Vtx‘(𝐺 ISubGr 𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶))
518fveq2i 6843 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
529, 51eqtri 2752 . . . . . 6 𝑊 = (Vtx‘(StarGr‘𝑁))
53 eqid 2729 . . . . . 6 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
5450, 52, 27, 53gricushgr 47910 . . . . 5 (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5544, 49, 54sylancl 586 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5655adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5739, 56mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))
5857ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wnel 3029  wral 3044  Vcvv 3444  wss 3911  {cpr 4587   class class class wbr 5102  cmpt 5183  cima 5634  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  0cn0 12418  chash 14271  Vtxcvtx 28976  Edgcedg 29027  USHGraphcushgr 29037  USPGraphcuspgr 29128  USGraphcusgr 29129   NeighbVtx cnbgr 29312   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47853  𝑔𝑟 cgric 47869  StarGrcstgr 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-subgr 29248  df-nbgr 29313  df-clnbgr 47813  df-isubgr 47854  df-grim 47871  df-gric 47874  df-stgr 47944
This theorem is referenced by:  gpg5gricstgr3  48074
  Copyright terms: Public domain W3C validator