Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgr Structured version   Visualization version   GIF version

Theorem isubgr3stgr 47978
Description: If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgr ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Distinct variable groups:   𝑦,𝐶   𝑥,𝐸,𝑦   𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgr
Dummy variables 𝑓 𝑔 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ USGraph)
2 simpr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝑉)
3 simpl 482 . . . . 5 (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁)
4 isubgr3stgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
5 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
6 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
7 isubgr3stgr.n . . . . . 6 𝑁 ∈ ℕ0
8 isubgr3stgr.s . . . . . 6 𝑆 = (StarGr‘𝑁)
9 isubgr3stgr.w . . . . . 6 𝑊 = (Vtx‘𝑆)
104, 5, 6, 7, 8, 9isubgr3stgrlem3 47971 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
111, 2, 3, 10syl2an3an 1424 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
124clnbgrssvtx 47836 . . . . . . . . . . . . . . . . 17 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
136, 12eqsstri 3996 . . . . . . . . . . . . . . . 16 𝐶𝑉
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑋𝑉𝐶𝑉)
1514anim2i 617 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
1615adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
174isubgrvtx 47871 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1816, 17syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1918eqcomd 2736 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶)))
2019f1oeq2d 6799 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2120biimpd 229 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2221adantrd 491 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2322imp 406 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊)
24 fvexd 6876 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V)
2524mptexd 7201 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) ∈ V)
26 isubgr3stgr.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
27 eqid 2730 . . . . . . . . 9 (Edg‘(𝐺 ISubGr 𝐶)) = (Edg‘(𝐺 ISubGr 𝐶))
28 eqid 2730 . . . . . . . . 9 (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))
294, 5, 6, 7, 8, 9, 26, 27, 28isubgr3stgrlem9 47977 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
30 f1oeq1 6791 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁))))
31 fveq1 6860 . . . . . . . . . . 11 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))
3231eqeq2d 2741 . . . . . . . . . 10 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3332ralbidv 3157 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3430, 33anbi12d 632 . . . . . . . 8 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))))
3525, 29, 34spcedv 3567 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))
3623, 35jca 511 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
3736ex 412 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3837eximdv 1917 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3911, 38mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
404isubgrusgr 47876 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
4115, 40syl 17 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
42 usgruspgr 29114 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph)
43 uspgrushgr 29111 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph)
4441, 42, 433syl 18 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph)
45 stgrusgra 47962 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
46 usgruspgr 29114 . . . . . . 7 ((StarGr‘𝑁) ∈ USGraph → (StarGr‘𝑁) ∈ USPGraph)
47 uspgrushgr 29111 . . . . . . 7 ((StarGr‘𝑁) ∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph)
4845, 46, 473syl 18 . . . . . 6 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USHGraph)
497, 48ax-mp 5 . . . . 5 (StarGr‘𝑁) ∈ USHGraph
50 eqid 2730 . . . . . 6 (Vtx‘(𝐺 ISubGr 𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶))
518fveq2i 6864 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
529, 51eqtri 2753 . . . . . 6 𝑊 = (Vtx‘(StarGr‘𝑁))
53 eqid 2730 . . . . . 6 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
5450, 52, 27, 53gricushgr 47921 . . . . 5 (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5544, 49, 54sylancl 586 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5655adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5739, 56mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))
5857ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wnel 3030  wral 3045  Vcvv 3450  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191  cima 5644  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  0cn0 12449  chash 14302  Vtxcvtx 28930  Edgcedg 28981  USHGraphcushgr 28991  USPGraphcuspgr 29082  USGraphcusgr 29083   NeighbVtx cnbgr 29266   ClNeighbVtx cclnbgr 47823   ISubGr cisubgr 47864  𝑔𝑟 cgric 47880  StarGrcstgr 47954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-hash 14303  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-edgf 28923  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-subgr 29202  df-nbgr 29267  df-clnbgr 47824  df-isubgr 47865  df-grim 47882  df-gric 47885  df-stgr 47955
This theorem is referenced by:  gpg5gricstgr3  48085
  Copyright terms: Public domain W3C validator