Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ USGraph) |
2 | | simpr 484 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
3 | | simpl 482 |
. . . . 5
⊢
(((♯‘𝑈)
= 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁) |
4 | | isubgr3stgr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
5 | | isubgr3stgr.u |
. . . . . 6
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
6 | | isubgr3stgr.c |
. . . . . 6
⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
7 | | isubgr3stgr.n |
. . . . . 6
⊢ 𝑁 ∈
ℕ0 |
8 | | isubgr3stgr.s |
. . . . . 6
⊢ 𝑆 = (StarGr‘𝑁) |
9 | | isubgr3stgr.w |
. . . . . 6
⊢ 𝑊 = (Vtx‘𝑆) |
10 | 4, 5, 6, 7, 8, 9 | isubgr3stgrlem3 47870 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) |
11 | 1, 2, 3, 10 | syl2an3an 1421 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) |
12 | 4 | clnbgrssvtx 47755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉 |
13 | 6, 12 | eqsstri 4029 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 ⊆ 𝑉 |
14 | 13 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ 𝑉 → 𝐶 ⊆ 𝑉) |
15 | 14 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝐶 ⊆ 𝑉)) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶 ⊆ 𝑉)) |
17 | 4 | isubgrvtx 47790 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USGraph ∧ 𝐶 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶) |
19 | 18 | eqcomd 2740 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶))) |
20 | 19 | f1oeq2d 6844 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶–1-1-onto→𝑊 ↔ 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊)) |
21 | 20 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶–1-1-onto→𝑊 → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊)) |
22 | 21 | adantrd 491 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊)) |
23 | 22 | imp 406 |
. . . . . . 7
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊) |
24 | | fvexd 6921 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V) |
25 | 24 | mptexd 7243 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) ∈ V) |
26 | | isubgr3stgr.e |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
27 | | eqid 2734 |
. . . . . . . . 9
⊢
(Edg‘(𝐺 ISubGr
𝐶)) = (Edg‘(𝐺 ISubGr 𝐶)) |
28 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) |
29 | 4, 5, 6, 7, 8, 9, 26, 27, 28 | isubgr3stgrlem9 47876 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖))‘𝑒))) |
30 | | f1oeq1 6836 |
. . . . . . . . 9
⊢ (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)))) |
31 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) → (𝑔‘𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖))‘𝑒)) |
32 | 31 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖))‘𝑒))) |
33 | 32 | ralbidv 3175 |
. . . . . . . . 9
⊢ (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖))‘𝑒))) |
34 | 30, 33 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓 “ 𝑖))‘𝑒)))) |
35 | 25, 29, 34 | spcedv 3597 |
. . . . . . 7
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))) |
36 | 23, 35 | jca 511 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
37 | 36 | ex 412 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
38 | 37 | eximdv 1914 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶–1-1-onto→𝑊 ∧ (𝑓‘𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
39 | 11, 38 | mpd 15 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
40 | 4 | isubgrusgr 47795 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝐶 ⊆ 𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph) |
41 | 15, 40 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph) |
42 | | usgruspgr 29211 |
. . . . . 6
⊢ ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph) |
43 | | uspgrushgr 29208 |
. . . . . 6
⊢ ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph) |
44 | 41, 42, 43 | 3syl 18 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph) |
45 | | stgrusgra 47861 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (StarGr‘𝑁)
∈ USGraph) |
46 | | usgruspgr 29211 |
. . . . . . 7
⊢
((StarGr‘𝑁)
∈ USGraph → (StarGr‘𝑁) ∈ USPGraph) |
47 | | uspgrushgr 29208 |
. . . . . . 7
⊢
((StarGr‘𝑁)
∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (StarGr‘𝑁)
∈ USHGraph) |
49 | 7, 48 | ax-mp 5 |
. . . . 5
⊢
(StarGr‘𝑁)
∈ USHGraph |
50 | | eqid 2734 |
. . . . . 6
⊢
(Vtx‘(𝐺 ISubGr
𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶)) |
51 | 8 | fveq2i 6909 |
. . . . . . 7
⊢
(Vtx‘𝑆) =
(Vtx‘(StarGr‘𝑁)) |
52 | 9, 51 | eqtri 2762 |
. . . . . 6
⊢ 𝑊 =
(Vtx‘(StarGr‘𝑁)) |
53 | | eqid 2734 |
. . . . . 6
⊢
(Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁)) |
54 | 50, 52, 27, 53 | gricushgr 47823 |
. . . . 5
⊢ (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) →
((𝐺 ISubGr 𝐶)
≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
55 | 44, 49, 54 | sylancl 586 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟
(StarGr‘𝑁) ↔
∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
56 | 55 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟
(StarGr‘𝑁) ↔
∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
57 | 39, 56 | mpbird 257 |
. 2
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟
(StarGr‘𝑁)) |
58 | 57 | ex 412 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟
(StarGr‘𝑁))) |