Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgr Structured version   Visualization version   GIF version

Theorem isubgr3stgr 47887
Description: If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgr ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Distinct variable groups:   𝑦,𝐶   𝑥,𝐸,𝑦   𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgr
Dummy variables 𝑓 𝑔 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ USGraph)
2 simpr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝑉)
3 simpl 482 . . . . 5 (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁)
4 isubgr3stgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
5 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
6 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
7 isubgr3stgr.n . . . . . 6 𝑁 ∈ ℕ0
8 isubgr3stgr.s . . . . . 6 𝑆 = (StarGr‘𝑁)
9 isubgr3stgr.w . . . . . 6 𝑊 = (Vtx‘𝑆)
104, 5, 6, 7, 8, 9isubgr3stgrlem3 47880 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
111, 2, 3, 10syl2an3an 1423 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
124clnbgrssvtx 47763 . . . . . . . . . . . . . . . . 17 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
136, 12eqsstri 4003 . . . . . . . . . . . . . . . 16 𝐶𝑉
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑋𝑉𝐶𝑉)
1514anim2i 617 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
1615adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
174isubgrvtx 47798 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1816, 17syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1918eqcomd 2740 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶)))
2019f1oeq2d 6810 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2120biimpd 229 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2221adantrd 491 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2322imp 406 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊)
24 fvexd 6887 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V)
2524mptexd 7212 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) ∈ V)
26 isubgr3stgr.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
27 eqid 2734 . . . . . . . . 9 (Edg‘(𝐺 ISubGr 𝐶)) = (Edg‘(𝐺 ISubGr 𝐶))
28 eqid 2734 . . . . . . . . 9 (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))
294, 5, 6, 7, 8, 9, 26, 27, 28isubgr3stgrlem9 47886 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
30 f1oeq1 6802 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁))))
31 fveq1 6871 . . . . . . . . . . 11 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))
3231eqeq2d 2745 . . . . . . . . . 10 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3332ralbidv 3161 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3430, 33anbi12d 632 . . . . . . . 8 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))))
3525, 29, 34spcedv 3575 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))
3623, 35jca 511 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
3736ex 412 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3837eximdv 1916 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3911, 38mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
404isubgrusgr 47803 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
4115, 40syl 17 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
42 usgruspgr 29091 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph)
43 uspgrushgr 29088 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph)
4441, 42, 433syl 18 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph)
45 stgrusgra 47871 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
46 usgruspgr 29091 . . . . . . 7 ((StarGr‘𝑁) ∈ USGraph → (StarGr‘𝑁) ∈ USPGraph)
47 uspgrushgr 29088 . . . . . . 7 ((StarGr‘𝑁) ∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph)
4845, 46, 473syl 18 . . . . . 6 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USHGraph)
497, 48ax-mp 5 . . . . 5 (StarGr‘𝑁) ∈ USHGraph
50 eqid 2734 . . . . . 6 (Vtx‘(𝐺 ISubGr 𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶))
518fveq2i 6875 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
529, 51eqtri 2757 . . . . . 6 𝑊 = (Vtx‘(StarGr‘𝑁))
53 eqid 2734 . . . . . 6 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
5450, 52, 27, 53gricushgr 47831 . . . . 5 (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5544, 49, 54sylancl 586 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5655adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5739, 56mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))
5857ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wnel 3035  wral 3050  Vcvv 3457  wss 3924  {cpr 4601   class class class wbr 5116  cmpt 5198  cima 5654  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  0cc0 11121  0cn0 12493  chash 14336  Vtxcvtx 28907  Edgcedg 28958  USHGraphcushgr 28968  USPGraphcuspgr 29059  USGraphcusgr 29060   NeighbVtx cnbgr 29243   ClNeighbVtx cclnbgr 47750   ISubGr cisubgr 47791  𝑔𝑟 cgric 47807  StarGrcstgr 47863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-oadd 8478  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-xnn0 12567  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-hash 14337  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-edgf 28900  df-vtx 28909  df-iedg 28910  df-edg 28959  df-uhgr 28969  df-ushgr 28970  df-upgr 28993  df-umgr 28994  df-uspgr 29061  df-usgr 29062  df-subgr 29179  df-nbgr 29244  df-clnbgr 47751  df-isubgr 47792  df-grim 47809  df-gric 47812  df-stgr 47864
This theorem is referenced by:  gpg5gricstgr3  47991
  Copyright terms: Public domain W3C validator