Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgr Structured version   Visualization version   GIF version

Theorem isubgr3stgr 47969
Description: If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgr ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Distinct variable groups:   𝑦,𝐶   𝑥,𝐸,𝑦   𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgr
Dummy variables 𝑓 𝑔 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ USGraph)
2 simpr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝑉)
3 simpl 482 . . . . 5 (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁)
4 isubgr3stgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
5 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
6 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
7 isubgr3stgr.n . . . . . 6 𝑁 ∈ ℕ0
8 isubgr3stgr.s . . . . . 6 𝑆 = (StarGr‘𝑁)
9 isubgr3stgr.w . . . . . 6 𝑊 = (Vtx‘𝑆)
104, 5, 6, 7, 8, 9isubgr3stgrlem3 47962 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
111, 2, 3, 10syl2an3an 1424 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
124clnbgrssvtx 47825 . . . . . . . . . . . . . . . . 17 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
136, 12eqsstri 3982 . . . . . . . . . . . . . . . 16 𝐶𝑉
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑋𝑉𝐶𝑉)
1514anim2i 617 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
1615adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
174isubgrvtx 47861 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1816, 17syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1918eqcomd 2735 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶)))
2019f1oeq2d 6760 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2120biimpd 229 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2221adantrd 491 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2322imp 406 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊)
24 fvexd 6837 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V)
2524mptexd 7160 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) ∈ V)
26 isubgr3stgr.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
27 eqid 2729 . . . . . . . . 9 (Edg‘(𝐺 ISubGr 𝐶)) = (Edg‘(𝐺 ISubGr 𝐶))
28 eqid 2729 . . . . . . . . 9 (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))
294, 5, 6, 7, 8, 9, 26, 27, 28isubgr3stgrlem9 47968 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
30 f1oeq1 6752 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁))))
31 fveq1 6821 . . . . . . . . . . 11 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))
3231eqeq2d 2740 . . . . . . . . . 10 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3332ralbidv 3152 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3430, 33anbi12d 632 . . . . . . . 8 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))))
3525, 29, 34spcedv 3553 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))
3623, 35jca 511 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
3736ex 412 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3837eximdv 1917 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3911, 38mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
404isubgrusgr 47866 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
4115, 40syl 17 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
42 usgruspgr 29125 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph)
43 uspgrushgr 29122 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph)
4441, 42, 433syl 18 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph)
45 stgrusgra 47953 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
46 usgruspgr 29125 . . . . . . 7 ((StarGr‘𝑁) ∈ USGraph → (StarGr‘𝑁) ∈ USPGraph)
47 uspgrushgr 29122 . . . . . . 7 ((StarGr‘𝑁) ∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph)
4845, 46, 473syl 18 . . . . . 6 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USHGraph)
497, 48ax-mp 5 . . . . 5 (StarGr‘𝑁) ∈ USHGraph
50 eqid 2729 . . . . . 6 (Vtx‘(𝐺 ISubGr 𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶))
518fveq2i 6825 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
529, 51eqtri 2752 . . . . . 6 𝑊 = (Vtx‘(StarGr‘𝑁))
53 eqid 2729 . . . . . 6 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
5450, 52, 27, 53gricushgr 47911 . . . . 5 (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5544, 49, 54sylancl 586 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5655adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5739, 56mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))
5857ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wnel 3029  wral 3044  Vcvv 3436  wss 3903  {cpr 4579   class class class wbr 5092  cmpt 5173  cima 5622  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  0cn0 12384  chash 14237  Vtxcvtx 28941  Edgcedg 28992  USHGraphcushgr 29002  USPGraphcuspgr 29093  USGraphcusgr 29094   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47854  𝑔𝑟 cgric 47870  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-vtx 28943  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-subgr 29213  df-nbgr 29278  df-clnbgr 47813  df-isubgr 47855  df-grim 47872  df-gric 47875  df-stgr 47946
This theorem is referenced by:  gpg5gricstgr3  48084
  Copyright terms: Public domain W3C validator