Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgr Structured version   Visualization version   GIF version

Theorem isubgr3stgr 47935
Description: If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgr ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Distinct variable groups:   𝑦,𝐶   𝑥,𝐸,𝑦   𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgr
Dummy variables 𝑓 𝑔 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ USGraph)
2 simpr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝑉)
3 simpl 482 . . . . 5 (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (♯‘𝑈) = 𝑁)
4 isubgr3stgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
5 isubgr3stgr.u . . . . . 6 𝑈 = (𝐺 NeighbVtx 𝑋)
6 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
7 isubgr3stgr.n . . . . . 6 𝑁 ∈ ℕ0
8 isubgr3stgr.s . . . . . 6 𝑆 = (StarGr‘𝑁)
9 isubgr3stgr.w . . . . . 6 𝑊 = (Vtx‘𝑆)
104, 5, 6, 7, 8, 9isubgr3stgrlem3 47928 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
111, 2, 3, 10syl2an3an 1424 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0))
124clnbgrssvtx 47793 . . . . . . . . . . . . . . . . 17 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
136, 12eqsstri 4005 . . . . . . . . . . . . . . . 16 𝐶𝑉
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑋𝑉𝐶𝑉)
1514anim2i 617 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
1615adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ∈ USGraph ∧ 𝐶𝑉))
174isubgrvtx 47828 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1816, 17syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (Vtx‘(𝐺 ISubGr 𝐶)) = 𝐶)
1918eqcomd 2741 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐶 = (Vtx‘(𝐺 ISubGr 𝐶)))
2019f1oeq2d 6813 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2120biimpd 229 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝑓:𝐶1-1-onto𝑊𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2221adantrd 491 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊))
2322imp 406 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → 𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊)
24 fvexd 6890 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (Edg‘(𝐺 ISubGr 𝐶)) ∈ V)
2524mptexd 7215 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) ∈ V)
26 isubgr3stgr.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
27 eqid 2735 . . . . . . . . 9 (Edg‘(𝐺 ISubGr 𝐶)) = (Edg‘(𝐺 ISubGr 𝐶))
28 eqid 2735 . . . . . . . . 9 (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))
294, 5, 6, 7, 8, 9, 26, 27, 28isubgr3stgrlem9 47934 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
30 f1oeq1 6805 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ↔ (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁))))
31 fveq1 6874 . . . . . . . . . . 11 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (𝑔𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))
3231eqeq2d 2746 . . . . . . . . . 10 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3332ralbidv 3163 . . . . . . . . 9 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → (∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒)))
3430, 33anbi12d 632 . . . . . . . 8 (𝑔 = (𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)) → ((𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖)):(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = ((𝑖 ∈ (Edg‘(𝐺 ISubGr 𝐶)) ↦ (𝑓𝑖))‘𝑒))))
3525, 29, 34spcedv 3577 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))
3623, 35jca 511 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0)) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
3736ex 412 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → (𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3837eximdv 1917 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (∃𝑓(𝑓:𝐶1-1-onto𝑊 ∧ (𝑓𝑋) = 0) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
3911, 38mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒))))
404isubgrusgr 47833 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐶𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
4115, 40syl 17 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USGraph)
42 usgruspgr 29105 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USGraph → (𝐺 ISubGr 𝐶) ∈ USPGraph)
43 uspgrushgr 29102 . . . . . 6 ((𝐺 ISubGr 𝐶) ∈ USPGraph → (𝐺 ISubGr 𝐶) ∈ USHGraph)
4441, 42, 433syl 18 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ISubGr 𝐶) ∈ USHGraph)
45 stgrusgra 47919 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
46 usgruspgr 29105 . . . . . . 7 ((StarGr‘𝑁) ∈ USGraph → (StarGr‘𝑁) ∈ USPGraph)
47 uspgrushgr 29102 . . . . . . 7 ((StarGr‘𝑁) ∈ USPGraph → (StarGr‘𝑁) ∈ USHGraph)
4845, 46, 473syl 18 . . . . . 6 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USHGraph)
497, 48ax-mp 5 . . . . 5 (StarGr‘𝑁) ∈ USHGraph
50 eqid 2735 . . . . . 6 (Vtx‘(𝐺 ISubGr 𝐶)) = (Vtx‘(𝐺 ISubGr 𝐶))
518fveq2i 6878 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
529, 51eqtri 2758 . . . . . 6 𝑊 = (Vtx‘(StarGr‘𝑁))
53 eqid 2735 . . . . . 6 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
5450, 52, 27, 53gricushgr 47878 . . . . 5 (((𝐺 ISubGr 𝐶) ∈ USHGraph ∧ (StarGr‘𝑁) ∈ USHGraph) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5544, 49, 54sylancl 586 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5655adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁) ↔ ∃𝑓(𝑓:(Vtx‘(𝐺 ISubGr 𝐶))–1-1-onto𝑊 ∧ ∃𝑔(𝑔:(Edg‘(𝐺 ISubGr 𝐶))–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ (Edg‘(𝐺 ISubGr 𝐶))(𝑓𝑒) = (𝑔𝑒)))))
5739, 56mpbird 257 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))
5857ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wnel 3036  wral 3051  Vcvv 3459  wss 3926  {cpr 4603   class class class wbr 5119  cmpt 5201  cima 5657  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  0cn0 12499  chash 14346  Vtxcvtx 28921  Edgcedg 28972  USHGraphcushgr 28982  USPGraphcuspgr 29073  USGraphcusgr 29074   NeighbVtx cnbgr 29257   ClNeighbVtx cclnbgr 47780   ISubGr cisubgr 47821  𝑔𝑟 cgric 47837  StarGrcstgr 47911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-hash 14347  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-iedg 28924  df-edg 28973  df-uhgr 28983  df-ushgr 28984  df-upgr 29007  df-umgr 29008  df-uspgr 29075  df-usgr 29076  df-subgr 29193  df-nbgr 29258  df-clnbgr 47781  df-isubgr 47822  df-grim 47839  df-gric 47842  df-stgr 47912
This theorem is referenced by:  gpg5gricstgr3  48040
  Copyright terms: Public domain W3C validator