MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2 Structured version   Visualization version   GIF version

Theorem ftc2 24020
Description: The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐵] and continuously differentiable on (𝐴, 𝐵), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐵) − 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
ftc2.a (𝜑𝐴 ∈ ℝ)
ftc2.b (𝜑𝐵 ∈ ℝ)
ftc2.le (𝜑𝐴𝐵)
ftc2.c (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc2.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ftc2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡

Proof of Theorem ftc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ftc2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 10289 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 ftc2.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10289 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
5 ftc2.le . . . . . 6 (𝜑𝐴𝐵)
6 ubicc2 12489 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1476 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
8 fvex 6340 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) ∈ V
98fvconst2 6611 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
107, 9syl 17 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
11 eqid 2771 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211subcn 22882 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1312a1i 11 . . . . . . . 8 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
14 eqid 2771 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)
15 ssid 3773 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
1615a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
17 ioossre 12433 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
1817a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
19 ftc2.i . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
20 ftc2.c . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
21 cncff 22909 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2314, 1, 3, 5, 16, 18, 19, 22ftc1a 24013 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
24 ftc2.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
25 cncff 22909 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
2624, 25syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2726feqmptd 6389 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
2827, 24eqeltrrd 2851 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2911, 13, 23, 28cncfmpt2f 22930 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
30 ax-resscn 10193 . . . . . . . . . . 11 ℝ ⊆ ℂ
3130a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
32 iccssre 12453 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
331, 3, 32syl2anc 573 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
34 fvex 6340 . . . . . . . . . . . . 13 ((ℝ D 𝐹)‘𝑡) ∈ V
3534a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
363adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
3736rexrd 10289 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
38 elicc2 12436 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
391, 3, 38syl2anc 573 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4039biimpa 462 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4140simp3d 1138 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
42 iooss2 12409 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
4337, 41, 42syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
44 ioombl 23546 . . . . . . . . . . . . . 14 (𝐴(,)𝑥) ∈ dom vol
4544a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
4634a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
4722feqmptd 6389 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
4847, 19eqeltrrd 2851 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
4948adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5043, 45, 46, 49iblss 23784 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5135, 50itgcl 23763 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
5226ffvelrnda 6500 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
5351, 52subcld 10592 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) ∈ ℂ)
5411tgioo2 22819 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
55 iccntr 22837 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
561, 3, 55syl2anc 573 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5731, 33, 53, 54, 11, 56dvmptntr 23947 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))))
58 reelprrecn 10228 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
5958a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
60 ioossicc 12457 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6160sseli 3748 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
6261, 51sylan2 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
6322ffvelrnda 6500 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
6414, 1, 3, 5, 20, 19ftc1cn 24019 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹))
6531, 33, 51, 54, 11, 56dvmptntr 23947 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)))
6622feqmptd 6389 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
6764, 65, 663eqtr3d 2813 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
6861, 52sylan2 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
6931, 33, 52, 54, 11, 56dvmptntr 23947 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))))
7027oveq2d 6807 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))))
7170, 66eqtr3d 2807 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
7269, 71eqtr3d 2807 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
7359, 62, 63, 67, 68, 63, 72dvmptsub 23943 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))))
7463subidd 10580 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0)
7574mpteq2dva 4878 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
7657, 73, 753eqtrd 2809 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
77 fconstmpt 5301 . . . . . . . 8 ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)
7876, 77syl6eqr 2823 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = ((𝐴(,)𝐵) × {0}))
791, 3, 29, 78dveq0 23976 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)}))
8079fveq1d 6332 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵))
81 oveq2 6799 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵))
82 itgeq1 23752 . . . . . . . . 9 ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
8381, 82syl 17 . . . . . . . 8 (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
84 fveq2 6330 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
8583, 84oveq12d 6809 . . . . . . 7 (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
86 eqid 2771 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))
87 ovex 6821 . . . . . . 7 (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) ∈ V
8885, 86, 87fvmpt 6422 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
897, 88syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
9080, 89eqtr3d 2807 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
91 lbicc2 12488 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
922, 4, 5, 91syl3anc 1476 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
93 oveq2 6799 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴))
94 iooid 12401 . . . . . . . . . . 11 (𝐴(,)𝐴) = ∅
9593, 94syl6eq 2821 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅)
96 itgeq1 23752 . . . . . . . . . 10 ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
9795, 96syl 17 . . . . . . . . 9 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
98 itg0 23759 . . . . . . . . 9 ∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0
9997, 98syl6eq 2821 . . . . . . . 8 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0)
100 fveq2 6330 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
10199, 100oveq12d 6809 . . . . . . 7 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (0 − (𝐹𝐴)))
102 df-neg 10469 . . . . . . 7 -(𝐹𝐴) = (0 − (𝐹𝐴))
103101, 102syl6eqr 2823 . . . . . 6 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = -(𝐹𝐴))
104 negex 10479 . . . . . 6 -(𝐹𝐴) ∈ V
105103, 86, 104fvmpt 6422 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
10692, 105syl 17 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
10710, 90, 1063eqtr3d 2813 . . 3 (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) = -(𝐹𝐴))
108107oveq2d 6807 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ((𝐹𝐵) + -(𝐹𝐴)))
10926, 7ffvelrnd 6501 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
11034a1i 11 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
111110, 48itgcl 23763 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
112109, 111pncan3d 10595 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
11326, 92ffvelrnd 6501 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
114109, 113negsubd 10598 . 2 (𝜑 → ((𝐹𝐵) + -(𝐹𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
115108, 112, 1143eqtr3d 2813 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  c0 4063  {csn 4316  {cpr 4318   class class class wbr 4786  cmpt 4863   × cxp 5247  dom cdm 5249  ran crn 5250  wf 6025  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136   + caddc 10139  *cxr 10273  cle 10275  cmin 10466  -cneg 10467  (,)cioo 12373  [,]cicc 12376  TopOpenctopn 16283  topGenctg 16299  fldccnfld 19954  intcnt 21035   Cn ccn 21242   ×t ctx 21577  cnccncf 22892  volcvol 23444  𝐿1cibl 23598  citg 23599   D cdv 23840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cc 9457  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-ofr 7043  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-sum 14618  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-ovol 23445  df-vol 23446  df-mbf 23600  df-itg1 23601  df-itg2 23602  df-ibl 23603  df-itg 23604  df-0p 23650  df-limc 23843  df-dv 23844
This theorem is referenced by:  ftc2ditglem  24021  itgparts  24023  itgsubstlem  24024  ftc2re  31009  itgpowd  38319  lhe4.4ex1a  39047  itgsin0pilem1  40676  itgcoscmulx  40695  itgsincmulx  40700  dirkeritg  40829  etransclem46  41007
  Copyright terms: Public domain W3C validator