MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2 Structured version   Visualization version   GIF version

Theorem ftc2 25553
Description: The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐡] and continuously differentiable on (𝐴, 𝐡), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐡) βˆ’ 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
ftc2.a (πœ‘ β†’ 𝐴 ∈ ℝ)
ftc2.b (πœ‘ β†’ 𝐡 ∈ ℝ)
ftc2.le (πœ‘ β†’ 𝐴 ≀ 𝐡)
ftc2.c (πœ‘ β†’ (ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
ftc2.i (πœ‘ β†’ (ℝ D 𝐹) ∈ 𝐿1)
ftc2.f (πœ‘ β†’ 𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
Assertion
Ref Expression
ftc2 (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
Distinct variable groups:   𝑑,𝐴   𝑑,𝐡   𝑑,𝐹   πœ‘,𝑑

Proof of Theorem ftc2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ftc2.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ ℝ)
21rexrd 11261 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ ℝ*)
3 ftc2.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ ℝ)
43rexrd 11261 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ ℝ*)
5 ftc2.le . . . . . 6 (πœ‘ β†’ 𝐴 ≀ 𝐡)
6 ubicc2 13439 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 ≀ 𝐡) β†’ 𝐡 ∈ (𝐴[,]𝐡))
72, 4, 5, 6syl3anc 1372 . . . . 5 (πœ‘ β†’ 𝐡 ∈ (𝐴[,]𝐡))
8 fvex 6902 . . . . . 6 ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) ∈ V
98fvconst2 7202 . . . . 5 (𝐡 ∈ (𝐴[,]𝐡) β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄))
107, 9syl 17 . . . 4 (πœ‘ β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄))
11 eqid 2733 . . . . . . . 8 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
1211subcn 24374 . . . . . . . . 9 βˆ’ ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld))
1312a1i 11 . . . . . . . 8 (πœ‘ β†’ βˆ’ ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld)))
14 eqid 2733 . . . . . . . . 9 (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
15 ssidd 4005 . . . . . . . . 9 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† (𝐴(,)𝐡))
16 ioossre 13382 . . . . . . . . . 10 (𝐴(,)𝐡) βŠ† ℝ
1716a1i 11 . . . . . . . . 9 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† ℝ)
18 ftc2.i . . . . . . . . 9 (πœ‘ β†’ (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2.c . . . . . . . . . 10 (πœ‘ β†’ (ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
20 cncff 24401 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚) β†’ (ℝ D 𝐹):(𝐴(,)𝐡)βŸΆβ„‚)
2119, 20syl 17 . . . . . . . . 9 (πœ‘ β†’ (ℝ D 𝐹):(𝐴(,)𝐡)βŸΆβ„‚)
2214, 1, 3, 5, 15, 17, 18, 21ftc1a 25546 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
23 ftc2.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
24 cncff 24401 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚) β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
2523, 24syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
2625feqmptd 6958 . . . . . . . . 9 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯)))
2726, 23eqeltrrd 2835 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯)) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
2811, 13, 22, 27cncfmpt2f 24423 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
29 ax-resscn 11164 . . . . . . . . . . 11 ℝ βŠ† β„‚
3029a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ βŠ† β„‚)
31 iccssre 13403 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴[,]𝐡) βŠ† ℝ)
321, 3, 31syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† ℝ)
33 fvex 6902 . . . . . . . . . . . . 13 ((ℝ D 𝐹)β€˜π‘‘) ∈ V
3433a1i 11 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ (𝐴(,)π‘₯)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
353adantr 482 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ)
3635rexrd 11261 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ*)
37 elicc2 13386 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
381, 3, 37syl2anc 585 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
3938biimpa 478 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡))
4039simp3d 1145 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
41 iooss2 13357 . . . . . . . . . . . . . 14 ((𝐡 ∈ ℝ* ∧ π‘₯ ≀ 𝐡) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
4236, 40, 41syl2anc 585 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
43 ioombl 25074 . . . . . . . . . . . . . 14 (𝐴(,)π‘₯) ∈ dom vol
4443a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) ∈ dom vol)
4533a1i 11 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
4621feqmptd 6958 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (ℝ D 𝐹) = (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)))
4746, 18eqeltrrd 2835 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
4847adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
4942, 44, 45, 48iblss 25314 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ (𝐴(,)π‘₯) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
5034, 49itgcl 25293 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
5125ffvelcdmda 7084 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
5250, 51subcld 11568 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) ∈ β„‚)
5311tgioo2 24311 . . . . . . . . . 10 (topGenβ€˜ran (,)) = ((TopOpenβ€˜β„‚fld) β†Ύt ℝ)
54 iccntr 24329 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(𝐴[,]𝐡)) = (𝐴(,)𝐡))
551, 3, 54syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(𝐴[,]𝐡)) = (𝐴(,)𝐡))
5630, 32, 52, 53, 11, 55dvmptntr 25480 . . . . . . . . 9 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))))
57 reelprrecn 11199 . . . . . . . . . . 11 ℝ ∈ {ℝ, β„‚}
5857a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ ∈ {ℝ, β„‚})
59 ioossicc 13407 . . . . . . . . . . . 12 (𝐴(,)𝐡) βŠ† (𝐴[,]𝐡)
6059sseli 3978 . . . . . . . . . . 11 (π‘₯ ∈ (𝐴(,)𝐡) β†’ π‘₯ ∈ (𝐴[,]𝐡))
6160, 50sylan2 594 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
6221ffvelcdmda 7084 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘₯) ∈ β„‚)
6314, 1, 3, 5, 19, 18ftc1cn 25552 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (ℝ D 𝐹))
6430, 32, 50, 53, 11, 55dvmptntr 25480 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)))
6521feqmptd 6958 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D 𝐹) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
6663, 64, 653eqtr3d 2781 . . . . . . . . . 10 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
6760, 51sylan2 594 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
6830, 32, 51, 53, 11, 55dvmptntr 25480 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯))) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (πΉβ€˜π‘₯))))
6926oveq2d 7422 . . . . . . . . . . . 12 (πœ‘ β†’ (ℝ D 𝐹) = (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯))))
7069, 65eqtr3d 2775 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
7168, 70eqtr3d 2775 . . . . . . . . . 10 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (πΉβ€˜π‘₯))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
7258, 61, 62, 66, 67, 62, 71dvmptsub 25476 . . . . . . . . 9 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯))))
7362subidd 11556 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯)) = 0)
7473mpteq2dva 5248 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ (𝐴(,)𝐡) ↦ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0))
7556, 72, 743eqtrd 2777 . . . . . . . 8 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0))
76 fconstmpt 5737 . . . . . . . 8 ((𝐴(,)𝐡) Γ— {0}) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0)
7775, 76eqtr4di 2791 . . . . . . 7 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = ((𝐴(,)𝐡) Γ— {0}))
781, 3, 28, 77dveq0 25509 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) = ((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)}))
7978fveq1d 6891 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅))
80 oveq2 7414 . . . . . . . . 9 (π‘₯ = 𝐡 β†’ (𝐴(,)π‘₯) = (𝐴(,)𝐡))
81 itgeq1 25282 . . . . . . . . 9 ((𝐴(,)π‘₯) = (𝐴(,)𝐡) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
8280, 81syl 17 . . . . . . . 8 (π‘₯ = 𝐡 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
83 fveq2 6889 . . . . . . . 8 (π‘₯ = 𝐡 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΅))
8482, 83oveq12d 7424 . . . . . . 7 (π‘₯ = 𝐡 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
85 eqid 2733 . . . . . . 7 (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))
86 ovex 7439 . . . . . . 7 (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)) ∈ V
8784, 85, 86fvmpt 6996 . . . . . 6 (𝐡 ∈ (𝐴[,]𝐡) β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
887, 87syl 17 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
8979, 88eqtr3d 2775 . . . 4 (πœ‘ β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
90 lbicc2 13438 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 ≀ 𝐡) β†’ 𝐴 ∈ (𝐴[,]𝐡))
912, 4, 5, 90syl3anc 1372 . . . . 5 (πœ‘ β†’ 𝐴 ∈ (𝐴[,]𝐡))
92 oveq2 7414 . . . . . . . . . . 11 (π‘₯ = 𝐴 β†’ (𝐴(,)π‘₯) = (𝐴(,)𝐴))
93 iooid 13349 . . . . . . . . . . 11 (𝐴(,)𝐴) = βˆ…
9492, 93eqtrdi 2789 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ (𝐴(,)π‘₯) = βˆ…)
95 itgeq1 25282 . . . . . . . . . 10 ((𝐴(,)π‘₯) = βˆ… β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑)
9694, 95syl 17 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑)
97 itg0 25289 . . . . . . . . 9 βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑 = 0
9896, 97eqtrdi 2789 . . . . . . . 8 (π‘₯ = 𝐴 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = 0)
99 fveq2 6889 . . . . . . . 8 (π‘₯ = 𝐴 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΄))
10098, 99oveq12d 7424 . . . . . . 7 (π‘₯ = 𝐴 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = (0 βˆ’ (πΉβ€˜π΄)))
101 df-neg 11444 . . . . . . 7 -(πΉβ€˜π΄) = (0 βˆ’ (πΉβ€˜π΄))
102100, 101eqtr4di 2791 . . . . . 6 (π‘₯ = 𝐴 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = -(πΉβ€˜π΄))
103 negex 11455 . . . . . 6 -(πΉβ€˜π΄) ∈ V
104102, 85, 103fvmpt 6996 . . . . 5 (𝐴 ∈ (𝐴[,]𝐡) β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) = -(πΉβ€˜π΄))
10591, 104syl 17 . . . 4 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) = -(πΉβ€˜π΄))
10610, 89, 1053eqtr3d 2781 . . 3 (πœ‘ β†’ (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)) = -(πΉβ€˜π΄))
107106oveq2d 7422 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅))) = ((πΉβ€˜π΅) + -(πΉβ€˜π΄)))
10825, 7ffvelcdmd 7085 . . 3 (πœ‘ β†’ (πΉβ€˜π΅) ∈ β„‚)
10933a1i 11 . . . 4 ((πœ‘ ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
110109, 47itgcl 25293 . . 3 (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
111108, 110pncan3d 11571 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅))) = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
11225, 91ffvelcdmd 7085 . . 3 (πœ‘ β†’ (πΉβ€˜π΄) ∈ β„‚)
113108, 112negsubd 11574 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + -(πΉβ€˜π΄)) = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
114107, 111, 1133eqtr3d 2781 1 (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475   βŠ† wss 3948  βˆ…c0 4322  {csn 4628  {cpr 4630   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  ran crn 5677  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406  β„‚cc 11105  β„cr 11106  0cc0 11107   + caddc 11110  β„*cxr 11244   ≀ cle 11246   βˆ’ cmin 11441  -cneg 11442  (,)cioo 13321  [,]cicc 13324  TopOpenctopn 17364  topGenctg 17380  β„‚fldccnfld 20937  intcnt 22513   Cn ccn 22720   Γ—t ctx 23056  β€“cnβ†’ccncf 24384  volcvol 24972  πΏ1cibl 25126  βˆ«citg 25127   D cdv 25372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cc 10427  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-ofr 7668  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-oadd 8467  df-omul 8468  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-mulg 18946  df-cntz 19176  df-cmn 19645  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-cmp 22883  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-ovol 24973  df-vol 24974  df-mbf 25128  df-itg1 25129  df-itg2 25130  df-ibl 25131  df-itg 25132  df-0p 25179  df-limc 25375  df-dv 25376
This theorem is referenced by:  ftc2ditglem  25554  itgparts  25556  itgsubstlem  25557  itgpowd  25559  ftc2re  33599  lcmineqlem12  40894  intlewftc  40915  lhe4.4ex1a  43074  itgsin0pilem1  44653  itgcoscmulx  44672  itgsincmulx  44677  dirkeritg  44805  etransclem46  44983
  Copyright terms: Public domain W3C validator