| Step | Hyp | Ref
| Expression |
| 1 | | ftc2.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | 1 | rexrd 11293 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 3 | | ftc2.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | 3 | rexrd 11293 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 5 | | ftc2.le |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 6 | | ubicc2 13487 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 7 | 2, 4, 5, 6 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 8 | | fvex 6899 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) ∈ V |
| 9 | 8 | fvconst2 7206 |
. . . . 5
⊢ (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)) |
| 10 | 7, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)) |
| 11 | | eqid 2734 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 12 | 11 | subcn 24825 |
. . . . . . . . 9
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 14 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) |
| 15 | | ssidd 3987 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) |
| 16 | | ioossre 13430 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 18 | | ftc2.i |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹) ∈
𝐿1) |
| 19 | | ftc2.c |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 20 | | cncff 24856 |
. . . . . . . . . 10
⊢ ((ℝ
D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 22 | 14, 1, 3, 5, 15, 17, 18, 21 | ftc1a 26015 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 23 | | ftc2.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 24 | | cncff 24856 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 26 | 25 | feqmptd 6957 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) |
| 27 | 26, 23 | eqeltrrd 2834 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 28 | 11, 13, 22, 27 | cncfmpt2f 24878 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 29 | | ax-resscn 11194 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
| 30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 31 | | iccssre 13451 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 32 | 1, 3, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 33 | | fvex 6899 |
. . . . . . . . . . . . 13
⊢ ((ℝ
D 𝐹)‘𝑡) ∈ V |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
| 35 | 3 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 36 | 35 | rexrd 11293 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈
ℝ*) |
| 37 | | elicc2 13434 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 38 | 1, 3, 37 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 39 | 38 | biimpa 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 40 | 39 | simp3d 1144 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 41 | | iooss2 13405 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ*
∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
| 42 | 36, 40, 41 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
| 43 | | ioombl 25537 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝑥) ∈ dom vol |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
| 45 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
| 46 | 21 | feqmptd 6957 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡))) |
| 47 | 46, 18 | eqeltrrd 2834 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
| 49 | 42, 44, 45, 48 | iblss 25777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
| 50 | 34, 49 | itgcl 25756 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
| 51 | 25 | ffvelcdmda 7084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
| 52 | 50, 51 | subcld 11602 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) ∈ ℂ) |
| 53 | | tgioo4 24763 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 54 | | iccntr 24780 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 55 | 1, 3, 54 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 56 | 30, 32, 52, 53, 11, 55 | dvmptntr 25946 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))))) |
| 57 | | reelprrecn 11229 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
| 58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 59 | | ioossicc 13455 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 60 | 59 | sseli 3959 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 61 | 60, 50 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
| 62 | 21 | ffvelcdmda 7084 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 63 | 14, 1, 3, 5, 19, 18 | ftc1cn 26021 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹)) |
| 64 | 30, 32, 50, 53, 11, 55 | dvmptntr 25946 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡))) |
| 65 | 21 | feqmptd 6957 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 66 | 63, 64, 65 | 3eqtr3d 2777 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 67 | 60, 51 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
| 68 | 30, 32, 51, 53, 11, 55 | dvmptntr 25946 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥)))) |
| 69 | 26 | oveq2d 7429 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)))) |
| 70 | 69, 65 | eqtr3d 2771 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 71 | 68, 70 | eqtr3d 2771 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 72 | 58, 61, 62, 66, 67, 62, 71 | dvmptsub 25942 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)))) |
| 73 | 62 | subidd 11590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0) |
| 74 | 73 | mpteq2dva 5222 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 75 | 56, 72, 74 | 3eqtrd 2773 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 76 | | fconstmpt 5727 |
. . . . . . . 8
⊢ ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0) |
| 77 | 75, 76 | eqtr4di 2787 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = ((𝐴(,)𝐵) × {0})) |
| 78 | 1, 3, 28, 77 | dveq0 25976 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})) |
| 79 | 78 | fveq1d 6888 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵)) |
| 80 | | oveq2 7421 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵)) |
| 81 | | itgeq1 25745 |
. . . . . . . . 9
⊢ ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
| 82 | 80, 81 | syl 17 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
| 83 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
| 84 | 82, 83 | oveq12d 7431 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
| 85 | | eqid 2734 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) |
| 86 | | ovex 7446 |
. . . . . . 7
⊢
(∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵)) ∈ V |
| 87 | 84, 85, 86 | fvmpt 6996 |
. . . . . 6
⊢ (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
| 88 | 7, 87 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
| 89 | 79, 88 | eqtr3d 2771 |
. . . 4
⊢ (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
| 90 | | lbicc2 13486 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 91 | 2, 4, 5, 90 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 92 | | oveq2 7421 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴)) |
| 93 | | iooid 13397 |
. . . . . . . . . . 11
⊢ (𝐴(,)𝐴) = ∅ |
| 94 | 92, 93 | eqtrdi 2785 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅) |
| 95 | | itgeq1 25745 |
. . . . . . . . . 10
⊢ ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡) |
| 97 | | itg0 25752 |
. . . . . . . . 9
⊢
∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0 |
| 98 | 96, 97 | eqtrdi 2785 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0) |
| 99 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 100 | 98, 99 | oveq12d 7431 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = (0 − (𝐹‘𝐴))) |
| 101 | | df-neg 11477 |
. . . . . . 7
⊢ -(𝐹‘𝐴) = (0 − (𝐹‘𝐴)) |
| 102 | 100, 101 | eqtr4di 2787 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = -(𝐹‘𝐴)) |
| 103 | | negex 11488 |
. . . . . 6
⊢ -(𝐹‘𝐴) ∈ V |
| 104 | 102, 85, 103 | fvmpt 6996 |
. . . . 5
⊢ (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) = -(𝐹‘𝐴)) |
| 105 | 91, 104 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) = -(𝐹‘𝐴)) |
| 106 | 10, 89, 105 | 3eqtr3d 2777 |
. . 3
⊢ (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵)) = -(𝐹‘𝐴)) |
| 107 | 106 | oveq2d 7429 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) = ((𝐹‘𝐵) + -(𝐹‘𝐴))) |
| 108 | 25, 7 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℂ) |
| 109 | 33 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
| 110 | 109, 47 | itgcl 25756 |
. . 3
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
| 111 | 108, 110 | pncan3d 11605 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
| 112 | 25, 91 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
| 113 | 108, 112 | negsubd 11608 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + -(𝐹‘𝐴)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 114 | 107, 111,
113 | 3eqtr3d 2777 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |