Step | Hyp | Ref
| Expression |
1 | | ftc2.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
3 | | ftc2.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
5 | | ftc2.le |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | | ubicc2 13197 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
7 | 2, 4, 5, 6 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
8 | | fvex 6787 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) ∈ V |
9 | 8 | fvconst2 7079 |
. . . . 5
⊢ (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)) |
10 | 7, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)) |
11 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
12 | 11 | subcn 24029 |
. . . . . . . . 9
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) |
15 | | ssidd 3944 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) |
16 | | ioossre 13140 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ ℝ |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
18 | | ftc2.i |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹) ∈
𝐿1) |
19 | | ftc2.c |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
20 | | cncff 24056 |
. . . . . . . . . 10
⊢ ((ℝ
D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
22 | 14, 1, 3, 5, 15, 17, 18, 21 | ftc1a 25201 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
23 | | ftc2.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
24 | | cncff 24056 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
26 | 25 | feqmptd 6837 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) |
27 | 26, 23 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
28 | 11, 13, 22, 27 | cncfmpt2f 24078 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
29 | | ax-resscn 10928 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
31 | | iccssre 13161 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
32 | 1, 3, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
33 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ ((ℝ
D 𝐹)‘𝑡) ∈ V |
34 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
35 | 3 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
36 | 35 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈
ℝ*) |
37 | | elicc2 13144 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
38 | 1, 3, 37 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
39 | 38 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
40 | 39 | simp3d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
41 | | iooss2 13115 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ*
∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
42 | 36, 40, 41 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
43 | | ioombl 24729 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝑥) ∈ dom vol |
44 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
45 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
46 | 21 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡))) |
47 | 46, 18 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
49 | 42, 44, 45, 48 | iblss 24969 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈
𝐿1) |
50 | 34, 49 | itgcl 24948 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
51 | 25 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
52 | 50, 51 | subcld 11332 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) ∈ ℂ) |
53 | 11 | tgioo2 23966 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
54 | | iccntr 23984 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
55 | 1, 3, 54 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
56 | 30, 32, 52, 53, 11, 55 | dvmptntr 25135 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))))) |
57 | | reelprrecn 10963 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
59 | | ioossicc 13165 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
60 | 59 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
61 | 60, 50 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
62 | 21 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
63 | 14, 1, 3, 5, 19, 18 | ftc1cn 25207 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹)) |
64 | 30, 32, 50, 53, 11, 55 | dvmptntr 25135 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡))) |
65 | 21 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
66 | 63, 64, 65 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
67 | 60, 51 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
68 | 30, 32, 51, 53, 11, 55 | dvmptntr 25135 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥)))) |
69 | 26 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)))) |
70 | 69, 65 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
71 | 68, 70 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
72 | 58, 61, 62, 66, 67, 62, 71 | dvmptsub 25131 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)))) |
73 | 62 | subidd 11320 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0) |
74 | 73 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)) |
75 | 56, 72, 74 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)) |
76 | | fconstmpt 5649 |
. . . . . . . 8
⊢ ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0) |
77 | 75, 76 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))) = ((𝐴(,)𝐵) × {0})) |
78 | 1, 3, 28, 77 | dveq0 25164 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})) |
79 | 78 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵)) |
80 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵)) |
81 | | itgeq1 24937 |
. . . . . . . . 9
⊢ ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
82 | 80, 81 | syl 17 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
83 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
84 | 82, 83 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
85 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥))) |
86 | | ovex 7308 |
. . . . . . 7
⊢
(∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵)) ∈ V |
87 | 84, 85, 86 | fvmpt 6875 |
. . . . . 6
⊢ (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
88 | 7, 87 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
89 | 79, 88 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) |
90 | | lbicc2 13196 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
91 | 2, 4, 5, 90 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
92 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴)) |
93 | | iooid 13107 |
. . . . . . . . . . 11
⊢ (𝐴(,)𝐴) = ∅ |
94 | 92, 93 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅) |
95 | | itgeq1 24937 |
. . . . . . . . . 10
⊢ ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡) |
96 | 94, 95 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡) |
97 | | itg0 24944 |
. . . . . . . . 9
⊢
∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0 |
98 | 96, 97 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0) |
99 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
100 | 98, 99 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = (0 − (𝐹‘𝐴))) |
101 | | df-neg 11208 |
. . . . . . 7
⊢ -(𝐹‘𝐴) = (0 − (𝐹‘𝐴)) |
102 | 100, 101 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)) = -(𝐹‘𝐴)) |
103 | | negex 11219 |
. . . . . 6
⊢ -(𝐹‘𝐴) ∈ V |
104 | 102, 85, 103 | fvmpt 6875 |
. . . . 5
⊢ (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) = -(𝐹‘𝐴)) |
105 | 91, 104 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝑥)))‘𝐴) = -(𝐹‘𝐴)) |
106 | 10, 89, 105 | 3eqtr3d 2786 |
. . 3
⊢ (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵)) = -(𝐹‘𝐴)) |
107 | 106 | oveq2d 7291 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) = ((𝐹‘𝐵) + -(𝐹‘𝐴))) |
108 | 25, 7 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℂ) |
109 | 33 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V) |
110 | 109, 47 | itgcl 24948 |
. . 3
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ) |
111 | 108, 110 | pncan3d 11335 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹‘𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡) |
112 | 25, 91 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
113 | 108, 112 | negsubd 11338 |
. 2
⊢ (𝜑 → ((𝐹‘𝐵) + -(𝐹‘𝐴)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
114 | 107, 111,
113 | 3eqtr3d 2786 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |