Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   GIF version

Theorem ftc2nc 33917
Description: Choice-free proof of ftc2 24098. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a (𝜑𝐴 ∈ ℝ)
ftc2nc.b (𝜑𝐵 ∈ ℝ)
ftc2nc.le (𝜑𝐴𝐵)
ftc2nc.c (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc2nc.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2nc.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ftc2nc (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡

Proof of Theorem ftc2nc
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 10343 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 ftc2nc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10343 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
5 ftc2nc.le . . . . . 6 (𝜑𝐴𝐵)
6 ubicc2 12493 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1490 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
8 fvex 6388 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) ∈ V
98fvconst2 6662 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
107, 9syl 17 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
11 eqid 2765 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211subcn 22948 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1312a1i 11 . . . . . . . 8 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
14 eqid 2765 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)
15 ssidd 3784 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 12437 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc2nc.i . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2nc.c . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 22975 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
22 ioof 12474 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
23 ffun 6226 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
2422, 23ax-mp 5 . . . . . . . . . . . 12 Fun (,)
25 fvelima 6437 . . . . . . . . . . . 12 ((Fun (,) ∧ 𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
2624, 25mpan 681 . . . . . . . . . . 11 (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
27 1st2nd2 7405 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2827fveq2d 6379 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
29 df-ov 6845 . . . . . . . . . . . . . . . 16 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
3028, 29syl6eqr 2817 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
3130eqeq1d 2767 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
3231adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
332, 4jca 507 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3433adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
35 xp1st 7398 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (1st𝑥) ∈ (𝐴[,]𝐵))
36 elicc1 12421 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
372, 4, 36syl2anc 579 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
3837biimpa 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵))
3938simp2d 1173 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (1st𝑥))
4035, 39sylan2 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → 𝐴 ≤ (1st𝑥))
41 xp2nd 7399 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (2nd𝑥) ∈ (𝐴[,]𝐵))
42 iccleub 12431 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
43423expa 1147 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
4433, 41, 43syl2an 589 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (2nd𝑥) ≤ 𝐵)
45 ioossioo 12468 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 ≤ (1st𝑥) ∧ (2nd𝑥) ≤ 𝐵)) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4634, 40, 44, 45syl12anc 865 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4746sselda 3761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 𝑡 ∈ (𝐴(,)𝐵))
4821ffvelrnda 6549 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
4948adantlr 706 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
5047, 49syldan 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
51 ioombl 23623 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol)
53 fvexd 6390 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
5421feqmptd 6438 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5554, 18eqeltrrd 2845 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5655adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5746, 52, 53, 56iblss 23862 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
58 ax-resscn 10246 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
59 ssid 3783 . . . . . . . . . . . . . . . . . . . . 21 ℂ ⊆ ℂ
60 cncfss 22981 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
6158, 59, 60mp2an 683 . . . . . . . . . . . . . . . . . . . 20 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
62 abscncf 22983 . . . . . . . . . . . . . . . . . . . 20 abs ∈ (ℂ–cn→ℝ)
6361, 62sselii 3758 . . . . . . . . . . . . . . . . . . 19 abs ∈ (ℂ–cn→ℂ)
6463a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → abs ∈ (ℂ–cn→ℂ))
6554reseq1d 5564 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6665adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6746resmptd 5629 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6866, 67eqtrd 2799 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6919adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
70 rescncf 22979 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵) → ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)))
7146, 69, 70sylc 65 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7268, 71eqeltrrd 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7364, 72cncfmpt1f 22995 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
74 cnmbf 23717 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7551, 73, 74sylancr 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7650, 57itgcl 23841 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
7776cjcld 14221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ)
78 ioossre 12437 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℝ
7978, 58sstri 3770 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ
80 cncfmptc 22993 . . . . . . . . . . . . . . . . . . . 20 (((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ ∧ ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8179, 59, 80mp3an23 1577 . . . . . . . . . . . . . . . . . . 19 ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8277, 81syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
83 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑠((ℝ D 𝐹)‘𝑡)
84 nfcsb1v 3707 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)
85 csbeq1a 3700 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑠 → ((ℝ D 𝐹)‘𝑡) = 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8683, 84, 85cbvmpt 4908 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) = (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8786, 72syl5eqelr 2849 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8882, 87mulcncf 23504 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
89 cnmbf 23717 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9051, 88, 89sylancr 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9150, 57, 75, 90itgabsnc 33902 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡)
9250abscld 14460 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → (abs‘((ℝ D 𝐹)‘𝑡)) ∈ ℝ)
93 fvexd 6390 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ V)
9493, 57, 75iblabsnc 33897 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ 𝐿1)
9550absge0d 14468 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑡)))
9692, 94, 95itgposval 23853 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡 = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
9791, 96breqtrd 4835 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
98 itgeq1 23830 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 = ∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡)
9998fveq2d 6379 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) = (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡))
100 eleq2 2833 . . . . . . . . . . . . . . . . . 18 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↔ 𝑡𝑠))
101100ifbid 4265 . . . . . . . . . . . . . . . . 17 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0) = if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))
102101mpteq2dv 4904 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))
103102fveq2d 6379 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
10499, 103breq12d 4822 . . . . . . . . . . . . . 14 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ((abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) ↔ (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10597, 104syl5ibcom 236 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10632, 105sylbid 231 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
107106rexlimdva 3178 . . . . . . . . . . 11 (𝜑 → (∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10826, 107syl5 34 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
109108ralrimiv 3112 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
11014, 1, 3, 5, 15, 17, 18, 21, 109ftc1anc 33916 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
111 ftc2nc.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
112 cncff 22975 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
114113feqmptd 6438 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
115114, 111eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11611, 13, 110, 115cncfmpt2f 22996 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11758a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
118 iccssre 12457 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1191, 3, 118syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
120 fvexd 6390 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
1213adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
122121rexrd 10343 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
123 elicc2 12440 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1241, 3, 123syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
125124biimpa 468 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
126125simp3d 1174 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
127 iooss2 12413 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
128122, 126, 127syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
129 ioombl 23623 . . . . . . . . . . . . . 14 (𝐴(,)𝑥) ∈ dom vol
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
131 fvexd 6390 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
13255adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
133128, 130, 131, 132iblss 23862 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
134120, 133itgcl 23841 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
135113ffvelrnda 6549 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
136134, 135subcld 10646 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) ∈ ℂ)
13711tgioo2 22885 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
138 iccntr 22903 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1391, 3, 138syl2anc 579 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
140117, 119, 136, 137, 11, 139dvmptntr 24025 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))))
141 reelprrecn 10281 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
142141a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
143 ioossicc 12461 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
144143sseli 3757 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
145144, 134sylan2 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
14621ffvelrnda 6549 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
14714, 1, 3, 5, 19, 18ftc1cnnc 33907 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹))
148117, 119, 134, 137, 11, 139dvmptntr 24025 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)))
14921feqmptd 6438 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
150147, 148, 1493eqtr3d 2807 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
151144, 135sylan2 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
152114oveq2d 6858 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))))
153117, 119, 135, 137, 11, 139dvmptntr 24025 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))))
154152, 149, 1533eqtr3rd 2808 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
155142, 145, 146, 150, 151, 146, 154dvmptsub 24021 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))))
156146subidd 10634 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0)
157156mpteq2dva 4903 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
158140, 155, 1573eqtrd 2803 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
159 fconstmpt 5333 . . . . . . . 8 ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)
160158, 159syl6eqr 2817 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = ((𝐴(,)𝐵) × {0}))
1611, 3, 116, 160dveq0 24054 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)}))
162161fveq1d 6377 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵))
163 oveq2 6850 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵))
164 itgeq1 23830 . . . . . . . . 9 ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
165163, 164syl 17 . . . . . . . 8 (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
166 fveq2 6375 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
167165, 166oveq12d 6860 . . . . . . 7 (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
168 eqid 2765 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))
169 ovex 6874 . . . . . . 7 (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) ∈ V
170167, 168, 169fvmpt 6471 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
1717, 170syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
172162, 171eqtr3d 2801 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
173 lbicc2 12492 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1742, 4, 5, 173syl3anc 1490 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
175 oveq2 6850 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴))
176 iooid 12405 . . . . . . . . . . 11 (𝐴(,)𝐴) = ∅
177175, 176syl6eq 2815 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅)
178 itgeq1 23830 . . . . . . . . . 10 ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
179177, 178syl 17 . . . . . . . . 9 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
180 itg0 23837 . . . . . . . . 9 ∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0
181179, 180syl6eq 2815 . . . . . . . 8 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0)
182 fveq2 6375 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
183181, 182oveq12d 6860 . . . . . . 7 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (0 − (𝐹𝐴)))
184 df-neg 10523 . . . . . . 7 -(𝐹𝐴) = (0 − (𝐹𝐴))
185183, 184syl6eqr 2817 . . . . . 6 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = -(𝐹𝐴))
186 negex 10533 . . . . . 6 -(𝐹𝐴) ∈ V
187185, 168, 186fvmpt 6471 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
188174, 187syl 17 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
18910, 172, 1883eqtr3d 2807 . . 3 (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) = -(𝐹𝐴))
190189oveq2d 6858 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ((𝐹𝐵) + -(𝐹𝐴)))
191113, 7ffvelrnd 6550 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
192 fvexd 6390 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
193192, 55itgcl 23841 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
194191, 193pncan3d 10649 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
195113, 174ffvelrnd 6550 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
196191, 195negsubd 10652 . 2 (𝜑 → ((𝐹𝐵) + -(𝐹𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
197190, 194, 1963eqtr3d 2807 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  Vcvv 3350  csb 3691  wss 3732  c0 4079  ifcif 4243  𝒫 cpw 4315  {csn 4334  {cpr 4336  cop 4340   class class class wbr 4809  cmpt 4888   × cxp 5275  dom cdm 5277  ran crn 5278  cres 5279  cima 5280  Fun wfun 6062  wf 6064  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  cc 10187  cr 10188  0cc0 10189   + caddc 10192   · cmul 10194  *cxr 10327  cle 10329  cmin 10520  -cneg 10521  (,)cioo 12377  [,]cicc 12380  ccj 14121  abscabs 14259  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019  intcnt 21101   Cn ccn 21308   ×t ctx 21643  cnccncf 22958  volcvol 23521  MblFncmbf 23672  2citg2 23674  𝐿1cibl 23675  citg 23676   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-itg 23681  df-0p 23728  df-limc 23921  df-dv 23922
This theorem is referenced by:  areacirc  33928
  Copyright terms: Public domain W3C validator