Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   GIF version

Theorem ftc2nc 35859
Description: Choice-free proof of ftc2 25208. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a (𝜑𝐴 ∈ ℝ)
ftc2nc.b (𝜑𝐵 ∈ ℝ)
ftc2nc.le (𝜑𝐴𝐵)
ftc2nc.c (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc2nc.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2nc.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ftc2nc (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡

Proof of Theorem ftc2nc
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 11025 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 ftc2nc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 11025 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
5 ftc2nc.le . . . . . 6 (𝜑𝐴𝐵)
6 ubicc2 13197 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1370 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
8 fvex 6787 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) ∈ V
98fvconst2 7079 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
107, 9syl 17 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
11 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211subcn 24029 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1312a1i 11 . . . . . . . 8 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
14 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)
15 ssidd 3944 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 13140 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc2nc.i . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2nc.c . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 24056 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
22 ioof 13179 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
23 ffun 6603 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
2422, 23ax-mp 5 . . . . . . . . . . . 12 Fun (,)
25 fvelima 6835 . . . . . . . . . . . 12 ((Fun (,) ∧ 𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
2624, 25mpan 687 . . . . . . . . . . 11 (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
27 1st2nd2 7870 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2827fveq2d 6778 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
29 df-ov 7278 . . . . . . . . . . . . . . . 16 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
3028, 29eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
3130eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
3231adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
332, 4jca 512 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3433adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
35 xp1st 7863 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (1st𝑥) ∈ (𝐴[,]𝐵))
36 elicc1 13123 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
372, 4, 36syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
3837biimpa 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵))
3938simp2d 1142 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (1st𝑥))
4035, 39sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → 𝐴 ≤ (1st𝑥))
41 xp2nd 7864 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (2nd𝑥) ∈ (𝐴[,]𝐵))
42 iccleub 13134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
43423expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
4433, 41, 43syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (2nd𝑥) ≤ 𝐵)
45 ioossioo 13173 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 ≤ (1st𝑥) ∧ (2nd𝑥) ≤ 𝐵)) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4634, 40, 44, 45syl12anc 834 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4746sselda 3921 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 𝑡 ∈ (𝐴(,)𝐵))
4821ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
4948adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
5047, 49syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
51 ioombl 24729 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol)
53 fvexd 6789 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
5421feqmptd 6837 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5554, 18eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5655adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5746, 52, 53, 56iblss 24969 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
58 ax-resscn 10928 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
59 ssid 3943 . . . . . . . . . . . . . . . . . . . . 21 ℂ ⊆ ℂ
60 cncfss 24062 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
6158, 59, 60mp2an 689 . . . . . . . . . . . . . . . . . . . 20 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
62 abscncf 24064 . . . . . . . . . . . . . . . . . . . 20 abs ∈ (ℂ–cn→ℝ)
6361, 62sselii 3918 . . . . . . . . . . . . . . . . . . 19 abs ∈ (ℂ–cn→ℂ)
6463a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → abs ∈ (ℂ–cn→ℂ))
6554reseq1d 5890 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6665adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6746resmptd 5948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6866, 67eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6919adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
70 rescncf 24060 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵) → ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)))
7146, 69, 70sylc 65 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7268, 71eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7364, 72cncfmpt1f 24077 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
74 cnmbf 24823 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7551, 73, 74sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7650, 57itgcl 24948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
7776cjcld 14907 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ)
78 ioossre 13140 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℝ
7978, 58sstri 3930 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ
80 cncfmptc 24075 . . . . . . . . . . . . . . . . . . . 20 (((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ ∧ ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8179, 59, 80mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8277, 81syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
83 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑠((ℝ D 𝐹)‘𝑡)
84 nfcsb1v 3857 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)
85 csbeq1a 3846 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑠 → ((ℝ D 𝐹)‘𝑡) = 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8683, 84, 85cbvmpt 5185 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) = (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8786, 72eqeltrrid 2844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8882, 87mulcncf 24610 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
89 cnmbf 24823 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9051, 88, 89sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9150, 57, 75, 90itgabsnc 35846 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡)
9250abscld 15148 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → (abs‘((ℝ D 𝐹)‘𝑡)) ∈ ℝ)
93 fvexd 6789 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ V)
9493, 57, 75iblabsnc 35841 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ 𝐿1)
9550absge0d 15156 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑡)))
9692, 94, 95itgposval 24960 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡 = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
9791, 96breqtrd 5100 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
98 itgeq1 24937 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 = ∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡)
9998fveq2d 6778 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) = (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡))
100 eleq2 2827 . . . . . . . . . . . . . . . . . 18 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↔ 𝑡𝑠))
101100ifbid 4482 . . . . . . . . . . . . . . . . 17 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0) = if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))
102101mpteq2dv 5176 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))
103102fveq2d 6778 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
10499, 103breq12d 5087 . . . . . . . . . . . . . 14 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ((abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) ↔ (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10597, 104syl5ibcom 244 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10632, 105sylbid 239 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
107106rexlimdva 3213 . . . . . . . . . . 11 (𝜑 → (∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10826, 107syl5 34 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
109108ralrimiv 3102 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
11014, 1, 3, 5, 15, 17, 18, 21, 109ftc1anc 35858 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
111 ftc2nc.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
112 cncff 24056 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
114113feqmptd 6837 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
115114, 111eqeltrrd 2840 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11611, 13, 110, 115cncfmpt2f 24078 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11758a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
118 iccssre 13161 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1191, 3, 118syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
120 fvexd 6789 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
1213adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
122121rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
123 elicc2 13144 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1241, 3, 123syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
125124biimpa 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
126125simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
127 iooss2 13115 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
128122, 126, 127syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
129 ioombl 24729 . . . . . . . . . . . . . 14 (𝐴(,)𝑥) ∈ dom vol
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
131 fvexd 6789 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
13255adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
133128, 130, 131, 132iblss 24969 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
134120, 133itgcl 24948 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
135113ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
136134, 135subcld 11332 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) ∈ ℂ)
13711tgioo2 23966 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
138 iccntr 23984 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1391, 3, 138syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
140117, 119, 136, 137, 11, 139dvmptntr 25135 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))))
141 reelprrecn 10963 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
142141a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
143 ioossicc 13165 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
144143sseli 3917 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
145144, 134sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
14621ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
14714, 1, 3, 5, 19, 18ftc1cnnc 35849 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹))
148117, 119, 134, 137, 11, 139dvmptntr 25135 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)))
14921feqmptd 6837 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
150147, 148, 1493eqtr3d 2786 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
151144, 135sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
152114oveq2d 7291 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))))
153117, 119, 135, 137, 11, 139dvmptntr 25135 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))))
154152, 149, 1533eqtr3rd 2787 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
155142, 145, 146, 150, 151, 146, 154dvmptsub 25131 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))))
156146subidd 11320 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0)
157156mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
158140, 155, 1573eqtrd 2782 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
159 fconstmpt 5649 . . . . . . . 8 ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)
160158, 159eqtr4di 2796 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = ((𝐴(,)𝐵) × {0}))
1611, 3, 116, 160dveq0 25164 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)}))
162161fveq1d 6776 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵))
163 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵))
164 itgeq1 24937 . . . . . . . . 9 ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
165163, 164syl 17 . . . . . . . 8 (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
166 fveq2 6774 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
167165, 166oveq12d 7293 . . . . . . 7 (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
168 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))
169 ovex 7308 . . . . . . 7 (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) ∈ V
170167, 168, 169fvmpt 6875 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
1717, 170syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
172162, 171eqtr3d 2780 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
173 lbicc2 13196 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1742, 4, 5, 173syl3anc 1370 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
175 oveq2 7283 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴))
176 iooid 13107 . . . . . . . . . . 11 (𝐴(,)𝐴) = ∅
177175, 176eqtrdi 2794 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅)
178 itgeq1 24937 . . . . . . . . . 10 ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
179177, 178syl 17 . . . . . . . . 9 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
180 itg0 24944 . . . . . . . . 9 ∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0
181179, 180eqtrdi 2794 . . . . . . . 8 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0)
182 fveq2 6774 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
183181, 182oveq12d 7293 . . . . . . 7 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (0 − (𝐹𝐴)))
184 df-neg 11208 . . . . . . 7 -(𝐹𝐴) = (0 − (𝐹𝐴))
185183, 184eqtr4di 2796 . . . . . 6 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = -(𝐹𝐴))
186 negex 11219 . . . . . 6 -(𝐹𝐴) ∈ V
187185, 168, 186fvmpt 6875 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
188174, 187syl 17 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
18910, 172, 1883eqtr3d 2786 . . 3 (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) = -(𝐹𝐴))
190189oveq2d 7291 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ((𝐹𝐵) + -(𝐹𝐴)))
191113, 7ffvelrnd 6962 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
192 fvexd 6789 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
193192, 55itgcl 24948 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
194191, 193pncan3d 11335 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
195113, 174ffvelrnd 6962 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
196191, 195negsubd 11338 . 2 (𝜑 → ((𝐹𝐵) + -(𝐹𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
197190, 194, 1963eqtr3d 2786 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  csb 3832  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  *cxr 11008  cle 11010  cmin 11205  -cneg 11206  (,)cioo 13079  [,]cicc 13082  ccj 14807  abscabs 14945  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  intcnt 22168   Cn ccn 22375   ×t ctx 22711  cnccncf 24039  volcvol 24627  MblFncmbf 24778  2citg2 24780  𝐿1cibl 24781  citg 24782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  areacirc  35870
  Copyright terms: Public domain W3C validator