Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   GIF version

Theorem ftc2nc 37034
Description: Choice-free proof of ftc2 25899. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a (πœ‘ β†’ 𝐴 ∈ ℝ)
ftc2nc.b (πœ‘ β†’ 𝐡 ∈ ℝ)
ftc2nc.le (πœ‘ β†’ 𝐴 ≀ 𝐡)
ftc2nc.c (πœ‘ β†’ (ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
ftc2nc.i (πœ‘ β†’ (ℝ D 𝐹) ∈ 𝐿1)
ftc2nc.f (πœ‘ β†’ 𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
Assertion
Ref Expression
ftc2nc (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
Distinct variable groups:   𝑑,𝐴   𝑑,𝐡   𝑑,𝐹   πœ‘,𝑑

Proof of Theorem ftc2nc
Dummy variables 𝑠 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ ℝ)
21rexrd 11271 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ ℝ*)
3 ftc2nc.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ ℝ)
43rexrd 11271 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ ℝ*)
5 ftc2nc.le . . . . . 6 (πœ‘ β†’ 𝐴 ≀ 𝐡)
6 ubicc2 13449 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 ≀ 𝐡) β†’ 𝐡 ∈ (𝐴[,]𝐡))
72, 4, 5, 6syl3anc 1370 . . . . 5 (πœ‘ β†’ 𝐡 ∈ (𝐴[,]𝐡))
8 fvex 6904 . . . . . 6 ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) ∈ V
98fvconst2 7207 . . . . 5 (𝐡 ∈ (𝐴[,]𝐡) β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄))
107, 9syl 17 . . . 4 (πœ‘ β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄))
11 eqid 2731 . . . . . . . 8 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
1211subcn 24702 . . . . . . . . 9 βˆ’ ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld))
1312a1i 11 . . . . . . . 8 (πœ‘ β†’ βˆ’ ∈ (((TopOpenβ€˜β„‚fld) Γ—t (TopOpenβ€˜β„‚fld)) Cn (TopOpenβ€˜β„‚fld)))
14 eqid 2731 . . . . . . . . 9 (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
15 ssidd 4005 . . . . . . . . 9 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† (𝐴(,)𝐡))
16 ioossre 13392 . . . . . . . . . 10 (𝐴(,)𝐡) βŠ† ℝ
1716a1i 11 . . . . . . . . 9 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† ℝ)
18 ftc2nc.i . . . . . . . . 9 (πœ‘ β†’ (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2nc.c . . . . . . . . . 10 (πœ‘ β†’ (ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
20 cncff 24733 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚) β†’ (ℝ D 𝐹):(𝐴(,)𝐡)βŸΆβ„‚)
2119, 20syl 17 . . . . . . . . 9 (πœ‘ β†’ (ℝ D 𝐹):(𝐴(,)𝐡)βŸΆβ„‚)
22 ioof 13431 . . . . . . . . . . . . 13 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
23 ffun 6720 . . . . . . . . . . . . 13 ((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ β†’ Fun (,))
2422, 23ax-mp 5 . . . . . . . . . . . 12 Fun (,)
25 fvelima 6957 . . . . . . . . . . . 12 ((Fun (,) ∧ 𝑠 ∈ ((,) β€œ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)))) β†’ βˆƒπ‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))((,)β€˜π‘₯) = 𝑠)
2624, 25mpan 687 . . . . . . . . . . 11 (𝑠 ∈ ((,) β€œ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ βˆƒπ‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))((,)β€˜π‘₯) = 𝑠)
27 1st2nd2 8018 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
2827fveq2d 6895 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ ((,)β€˜π‘₯) = ((,)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩))
29 df-ov 7415 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = ((,)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
3028, 29eqtr4di 2789 . . . . . . . . . . . . . . 15 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ ((,)β€˜π‘₯) = ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)))
3130eqeq1d 2733 . . . . . . . . . . . . . 14 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ (((,)β€˜π‘₯) = 𝑠 ↔ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠))
3231adantl 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (((,)β€˜π‘₯) = 𝑠 ↔ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠))
332, 4jca 511 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*))
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*))
35 xp1st 8011 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ (1st β€˜π‘₯) ∈ (𝐴[,]𝐡))
36 elicc1 13375 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ ((1st β€˜π‘₯) ∈ (𝐴[,]𝐡) ↔ ((1st β€˜π‘₯) ∈ ℝ* ∧ 𝐴 ≀ (1st β€˜π‘₯) ∧ (1st β€˜π‘₯) ≀ 𝐡)))
372, 4, 36syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ ((1st β€˜π‘₯) ∈ (𝐴[,]𝐡) ↔ ((1st β€˜π‘₯) ∈ ℝ* ∧ 𝐴 ≀ (1st β€˜π‘₯) ∧ (1st β€˜π‘₯) ≀ 𝐡)))
3837biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ (1st β€˜π‘₯) ∈ (𝐴[,]𝐡)) β†’ ((1st β€˜π‘₯) ∈ ℝ* ∧ 𝐴 ≀ (1st β€˜π‘₯) ∧ (1st β€˜π‘₯) ≀ 𝐡))
3938simp2d 1142 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ (1st β€˜π‘₯) ∈ (𝐴[,]𝐡)) β†’ 𝐴 ≀ (1st β€˜π‘₯))
4035, 39sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ 𝐴 ≀ (1st β€˜π‘₯))
41 xp2nd 8012 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)) β†’ (2nd β€˜π‘₯) ∈ (𝐴[,]𝐡))
42 iccleub 13386 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ (2nd β€˜π‘₯) ∈ (𝐴[,]𝐡)) β†’ (2nd β€˜π‘₯) ≀ 𝐡)
43423expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) ∧ (2nd β€˜π‘₯) ∈ (𝐴[,]𝐡)) β†’ (2nd β€˜π‘₯) ≀ 𝐡)
4433, 41, 43syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (2nd β€˜π‘₯) ≀ 𝐡)
45 ioossioo 13425 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) ∧ (𝐴 ≀ (1st β€˜π‘₯) ∧ (2nd β€˜π‘₯) ≀ 𝐡)) β†’ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† (𝐴(,)𝐡))
4634, 40, 44, 45syl12anc 834 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† (𝐴(,)𝐡))
4746sselda 3982 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) β†’ 𝑑 ∈ (𝐴(,)𝐡))
4821ffvelcdmda 7086 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ β„‚)
4948adantlr 712 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ β„‚)
5047, 49syldan 590 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ β„‚)
51 ioombl 25414 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ∈ dom vol
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ∈ dom vol)
53 fvexd 6906 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
5421feqmptd 6960 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (ℝ D 𝐹) = (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)))
5554, 18eqeltrrd 2833 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
5746, 52, 53, 56iblss 25654 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
58 ax-resscn 11173 . . . . . . . . . . . . . . . . . . . . 21 ℝ βŠ† β„‚
59 ssid 4004 . . . . . . . . . . . . . . . . . . . . 21 β„‚ βŠ† β„‚
60 cncfss 24739 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (ℂ–cn→ℝ) βŠ† (ℂ–cnβ†’β„‚))
6158, 59, 60mp2an 689 . . . . . . . . . . . . . . . . . . . 20 (ℂ–cn→ℝ) βŠ† (ℂ–cnβ†’β„‚)
62 abscncf 24741 . . . . . . . . . . . . . . . . . . . 20 abs ∈ (ℂ–cn→ℝ)
6361, 62sselii 3979 . . . . . . . . . . . . . . . . . . 19 abs ∈ (ℂ–cnβ†’β„‚)
6463a1i 11 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ abs ∈ (ℂ–cnβ†’β„‚))
6554reseq1d 5980 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ ((ℝ D 𝐹) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) = ((𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))))
6665adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((ℝ D 𝐹) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) = ((𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))))
6746resmptd 6040 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) = (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((ℝ D 𝐹)β€˜π‘‘)))
6866, 67eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((ℝ D 𝐹) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) = (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((ℝ D 𝐹)β€˜π‘‘)))
6919adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
70 rescncf 24737 . . . . . . . . . . . . . . . . . . . 20 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† (𝐴(,)𝐡) β†’ ((ℝ D 𝐹) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚) β†’ ((ℝ D 𝐹) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚)))
7146, 69, 70sylc 65 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ((ℝ D 𝐹) β†Ύ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
7268, 71eqeltrrd 2833 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
7364, 72cncfmpt1f 24754 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (absβ€˜((ℝ D 𝐹)β€˜π‘‘))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
74 cnmbf 25508 . . . . . . . . . . . . . . . . 17 ((((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ∈ dom vol ∧ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (absβ€˜((ℝ D 𝐹)β€˜π‘‘))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚)) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (absβ€˜((ℝ D 𝐹)β€˜π‘‘))) ∈ MblFn)
7551, 73, 74sylancr 586 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (absβ€˜((ℝ D 𝐹)β€˜π‘‘))) ∈ MblFn)
7650, 57itgcl 25633 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ∫((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
7776cjcld 15150 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ∈ β„‚)
78 ioossre 13392 . . . . . . . . . . . . . . . . . . . . 21 ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† ℝ
7978, 58sstri 3991 . . . . . . . . . . . . . . . . . . . 20 ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† β„‚
80 cncfmptc 24752 . . . . . . . . . . . . . . . . . . . 20 (((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ∈ β„‚ ∧ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑)) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
8179, 59, 80mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 ((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ∈ β„‚ β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑)) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
8277, 81syl 17 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑)) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
83 nfcv 2902 . . . . . . . . . . . . . . . . . . . 20 Ⅎ𝑠((ℝ D 𝐹)β€˜π‘‘)
84 nfcsb1v 3918 . . . . . . . . . . . . . . . . . . . 20 Ⅎ𝑑⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘)
85 csbeq1a 3907 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑠 β†’ ((ℝ D 𝐹)β€˜π‘‘) = ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))
8683, 84, 85cbvmpt 5259 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((ℝ D 𝐹)β€˜π‘‘)) = (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))
8786, 72eqeltrrid 2837 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘)) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
8882, 87mulcncf 25294 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) Β· ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚))
89 cnmbf 25508 . . . . . . . . . . . . . . . . 17 ((((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ∈ dom vol ∧ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) Β· ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))) ∈ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))–cnβ†’β„‚)) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) Β· ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))) ∈ MblFn)
9051, 88, 89sylancr 586 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑠 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ ((βˆ—β€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) Β· ⦋𝑠 / π‘‘β¦Œ((ℝ D 𝐹)β€˜π‘‘))) ∈ MblFn)
9150, 57, 75, 90itgabsnc 37021 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (absβ€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ ∫((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))(absβ€˜((ℝ D 𝐹)β€˜π‘‘)) d𝑑)
9250abscld 15390 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) β†’ (absβ€˜((ℝ D 𝐹)β€˜π‘‘)) ∈ ℝ)
93 fvexd 6906 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
9493, 57, 75iblabsnc 37016 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↦ (absβ€˜((ℝ D 𝐹)β€˜π‘‘))) ∈ 𝐿1)
9550absge0d 15398 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) ∧ 𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))) β†’ 0 ≀ (absβ€˜((ℝ D 𝐹)β€˜π‘‘)))
9692, 94, 95itgposval 25645 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ ∫((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))(absβ€˜((ℝ D 𝐹)β€˜π‘‘)) d𝑑 = (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))))
9791, 96breqtrd 5174 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (absβ€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))))
98 itgeq1 25622 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ ∫((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑 = βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑)
9998fveq2d 6895 . . . . . . . . . . . . . . 15 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ (absβ€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) = (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑))
100 eleq2 2821 . . . . . . . . . . . . . . . . . 18 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ (𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) ↔ 𝑑 ∈ 𝑠))
101100ifbid 4551 . . . . . . . . . . . . . . . . 17 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0) = if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))
102101mpteq2dv 5250 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ (𝑑 ∈ ℝ ↦ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)) = (𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))
103102fveq2d 6895 . . . . . . . . . . . . . . 15 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))) = (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))))
10499, 103breq12d 5161 . . . . . . . . . . . . . 14 (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ ((absβ€˜βˆ«((1st β€˜π‘₯)(,)(2nd β€˜π‘₯))((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ ((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)), (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))) ↔ (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))))
10597, 104syl5ibcom 244 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (((1st β€˜π‘₯)(,)(2nd β€˜π‘₯)) = 𝑠 β†’ (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))))
10632, 105sylbid 239 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (((,)β€˜π‘₯) = 𝑠 β†’ (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))))
107106rexlimdva 3154 . . . . . . . . . . 11 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))((,)β€˜π‘₯) = 𝑠 β†’ (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))))
10826, 107syl5 34 . . . . . . . . . 10 (πœ‘ β†’ (𝑠 ∈ ((,) β€œ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡))) β†’ (absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0)))))
109108ralrimiv 3144 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘  ∈ ((,) β€œ ((𝐴[,]𝐡) Γ— (𝐴[,]𝐡)))(absβ€˜βˆ«π‘ ((ℝ D 𝐹)β€˜π‘‘) d𝑑) ≀ (∫2β€˜(𝑑 ∈ ℝ ↦ if(𝑑 ∈ 𝑠, (absβ€˜((ℝ D 𝐹)β€˜π‘‘)), 0))))
11014, 1, 3, 5, 15, 17, 18, 21, 109ftc1anc 37033 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
111 ftc2nc.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
112 cncff 24733 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚) β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
113111, 112syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
114113feqmptd 6960 . . . . . . . . 9 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯)))
115114, 111eqeltrrd 2833 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯)) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
11611, 13, 110, 115cncfmpt2f 24755 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
11758a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ βŠ† β„‚)
118 iccssre 13413 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴[,]𝐡) βŠ† ℝ)
1191, 3, 118syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† ℝ)
120 fvexd 6906 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ (𝐴(,)π‘₯)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
1213adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ)
122121rexrd 11271 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ*)
123 elicc2 13396 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
1241, 3, 123syl2anc 583 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
125124biimpa 476 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡))
126125simp3d 1143 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
127 iooss2 13367 . . . . . . . . . . . . . 14 ((𝐡 ∈ ℝ* ∧ π‘₯ ≀ 𝐡) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
128122, 126, 127syl2anc 583 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) βŠ† (𝐴(,)𝐡))
129 ioombl 25414 . . . . . . . . . . . . . 14 (𝐴(,)π‘₯) ∈ dom vol
130129a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝐴(,)π‘₯) ∈ dom vol)
131 fvexd 6906 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
13255adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
133128, 130, 131, 132iblss 25654 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (𝑑 ∈ (𝐴(,)π‘₯) ↦ ((ℝ D 𝐹)β€˜π‘‘)) ∈ 𝐿1)
134120, 133itgcl 25633 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
135113ffvelcdmda 7086 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
136134, 135subcld 11578 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) ∈ β„‚)
13711tgioo2 24639 . . . . . . . . . 10 (topGenβ€˜ran (,)) = ((TopOpenβ€˜β„‚fld) β†Ύt ℝ)
138 iccntr 24657 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(𝐴[,]𝐡)) = (𝐴(,)𝐡))
1391, 3, 138syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(𝐴[,]𝐡)) = (𝐴(,)𝐡))
140117, 119, 136, 137, 11, 139dvmptntr 25823 . . . . . . . . 9 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))))
141 reelprrecn 11208 . . . . . . . . . . 11 ℝ ∈ {ℝ, β„‚}
142141a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ ∈ {ℝ, β„‚})
143 ioossicc 13417 . . . . . . . . . . . 12 (𝐴(,)𝐡) βŠ† (𝐴[,]𝐡)
144143sseli 3978 . . . . . . . . . . 11 (π‘₯ ∈ (𝐴(,)𝐡) β†’ π‘₯ ∈ (𝐴[,]𝐡))
145144, 134sylan2 592 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
14621ffvelcdmda 7086 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘₯) ∈ β„‚)
14714, 1, 3, 5, 19, 18ftc1cnnc 37024 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (ℝ D 𝐹))
148117, 119, 134, 137, 11, 139dvmptntr 25823 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)))
14921feqmptd 6960 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D 𝐹) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
150147, 148, 1493eqtr3d 2779 . . . . . . . . . 10 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑)) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
151144, 135sylan2 592 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
152114oveq2d 7428 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D 𝐹) = (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯))))
153117, 119, 135, 137, 11, 139dvmptntr 25823 . . . . . . . . . . 11 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (πΉβ€˜π‘₯))) = (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (πΉβ€˜π‘₯))))
154152, 149, 1533eqtr3rd 2780 . . . . . . . . . 10 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (πΉβ€˜π‘₯))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ ((ℝ D 𝐹)β€˜π‘₯)))
155142, 145, 146, 150, 151, 146, 154dvmptsub 25819 . . . . . . . . 9 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴(,)𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯))))
156146subidd 11566 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯)) = 0)
157156mpteq2dva 5248 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ (𝐴(,)𝐡) ↦ (((ℝ D 𝐹)β€˜π‘₯) βˆ’ ((ℝ D 𝐹)β€˜π‘₯))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0))
158140, 155, 1573eqtrd 2775 . . . . . . . 8 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0))
159 fconstmpt 5738 . . . . . . . 8 ((𝐴(,)𝐡) Γ— {0}) = (π‘₯ ∈ (𝐴(,)𝐡) ↦ 0)
160158, 159eqtr4di 2789 . . . . . . 7 (πœ‘ β†’ (ℝ D (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))) = ((𝐴(,)𝐡) Γ— {0}))
1611, 3, 116, 160dveq0 25853 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) = ((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)}))
162161fveq1d 6893 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅))
163 oveq2 7420 . . . . . . . . 9 (π‘₯ = 𝐡 β†’ (𝐴(,)π‘₯) = (𝐴(,)𝐡))
164 itgeq1 25622 . . . . . . . . 9 ((𝐴(,)π‘₯) = (𝐴(,)𝐡) β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
165163, 164syl 17 . . . . . . . 8 (π‘₯ = 𝐡 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
166 fveq2 6891 . . . . . . . 8 (π‘₯ = 𝐡 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΅))
167165, 166oveq12d 7430 . . . . . . 7 (π‘₯ = 𝐡 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
168 eqid 2731 . . . . . . 7 (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯))) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))
169 ovex 7445 . . . . . . 7 (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)) ∈ V
170167, 168, 169fvmpt 6998 . . . . . 6 (𝐡 ∈ (𝐴[,]𝐡) β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
1717, 170syl 17 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
172162, 171eqtr3d 2773 . . . 4 (πœ‘ β†’ (((𝐴[,]𝐡) Γ— {((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄)})β€˜π΅) = (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)))
173 lbicc2 13448 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 ≀ 𝐡) β†’ 𝐴 ∈ (𝐴[,]𝐡))
1742, 4, 5, 173syl3anc 1370 . . . . 5 (πœ‘ β†’ 𝐴 ∈ (𝐴[,]𝐡))
175 oveq2 7420 . . . . . . . . . . 11 (π‘₯ = 𝐴 β†’ (𝐴(,)π‘₯) = (𝐴(,)𝐴))
176 iooid 13359 . . . . . . . . . . 11 (𝐴(,)𝐴) = βˆ…
177175, 176eqtrdi 2787 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ (𝐴(,)π‘₯) = βˆ…)
178 itgeq1 25622 . . . . . . . . . 10 ((𝐴(,)π‘₯) = βˆ… β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑)
179177, 178syl 17 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑)
180 itg0 25629 . . . . . . . . 9 βˆ«βˆ…((ℝ D 𝐹)β€˜π‘‘) d𝑑 = 0
181179, 180eqtrdi 2787 . . . . . . . 8 (π‘₯ = 𝐴 β†’ ∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = 0)
182 fveq2 6891 . . . . . . . 8 (π‘₯ = 𝐴 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΄))
183181, 182oveq12d 7430 . . . . . . 7 (π‘₯ = 𝐴 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = (0 βˆ’ (πΉβ€˜π΄)))
184 df-neg 11454 . . . . . . 7 -(πΉβ€˜π΄) = (0 βˆ’ (πΉβ€˜π΄))
185183, 184eqtr4di 2789 . . . . . 6 (π‘₯ = 𝐴 β†’ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)) = -(πΉβ€˜π΄))
186 negex 11465 . . . . . 6 -(πΉβ€˜π΄) ∈ V
187185, 168, 186fvmpt 6998 . . . . 5 (𝐴 ∈ (𝐴[,]𝐡) β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) = -(πΉβ€˜π΄))
188174, 187syl 17 . . . 4 (πœ‘ β†’ ((π‘₯ ∈ (𝐴[,]𝐡) ↦ (∫(𝐴(,)π‘₯)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π‘₯)))β€˜π΄) = -(πΉβ€˜π΄))
18910, 172, 1883eqtr3d 2779 . . 3 (πœ‘ β†’ (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅)) = -(πΉβ€˜π΄))
190189oveq2d 7428 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅))) = ((πΉβ€˜π΅) + -(πΉβ€˜π΄)))
191113, 7ffvelcdmd 7087 . . 3 (πœ‘ β†’ (πΉβ€˜π΅) ∈ β„‚)
192 fvexd 6906 . . . 4 ((πœ‘ ∧ 𝑑 ∈ (𝐴(,)𝐡)) β†’ ((ℝ D 𝐹)β€˜π‘‘) ∈ V)
193192, 55itgcl 25633 . . 3 (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 ∈ β„‚)
194191, 193pncan3d 11581 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + (∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 βˆ’ (πΉβ€˜π΅))) = ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑)
195113, 174ffvelcdmd 7087 . . 3 (πœ‘ β†’ (πΉβ€˜π΄) ∈ β„‚)
196191, 195negsubd 11584 . 2 (πœ‘ β†’ ((πΉβ€˜π΅) + -(πΉβ€˜π΄)) = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
197190, 194, 1963eqtr3d 2779 1 (πœ‘ β†’ ∫(𝐴(,)𝐡)((ℝ D 𝐹)β€˜π‘‘) d𝑑 = ((πΉβ€˜π΅) βˆ’ (πΉβ€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  Vcvv 3473  β¦‹csb 3893   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528  π’« cpw 4602  {csn 4628  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679  Fun wfun 6537  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  β„‚cc 11114  β„cr 11115  0cc0 11116   + caddc 11119   Β· cmul 11121  β„*cxr 11254   ≀ cle 11256   βˆ’ cmin 11451  -cneg 11452  (,)cioo 13331  [,]cicc 13334  βˆ—ccj 15050  abscabs 15188  TopOpenctopn 17374  topGenctg 17390  β„‚fldccnfld 21233  intcnt 22841   Cn ccn 23048   Γ—t ctx 23384  β€“cnβ†’ccncf 24716  volcvol 25312  MblFncmbf 25463  βˆ«2citg2 25465  πΏ1cibl 25466  βˆ«citg 25467   D cdv 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-ovol 25313  df-vol 25314  df-mbf 25468  df-itg1 25469  df-itg2 25470  df-ibl 25471  df-itg 25472  df-0p 25519  df-limc 25715  df-dv 25716
This theorem is referenced by:  areacirc  37045
  Copyright terms: Public domain W3C validator