Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   GIF version

Theorem ftc2nc 34970
Description: Choice-free proof of ftc2 24635. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a (𝜑𝐴 ∈ ℝ)
ftc2nc.b (𝜑𝐵 ∈ ℝ)
ftc2nc.le (𝜑𝐴𝐵)
ftc2nc.c (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc2nc.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2nc.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ftc2nc (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡

Proof of Theorem ftc2nc
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 10685 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 ftc2nc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10685 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
5 ftc2nc.le . . . . . 6 (𝜑𝐴𝐵)
6 ubicc2 12847 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1367 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
8 fvex 6677 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) ∈ V
98fvconst2 6960 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
107, 9syl 17 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
11 eqid 2821 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211subcn 23468 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1312a1i 11 . . . . . . . 8 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
14 eqid 2821 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)
15 ssidd 3989 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 12792 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc2nc.i . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2nc.c . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 23495 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
22 ioof 12829 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
23 ffun 6511 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
2422, 23ax-mp 5 . . . . . . . . . . . 12 Fun (,)
25 fvelima 6725 . . . . . . . . . . . 12 ((Fun (,) ∧ 𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
2624, 25mpan 688 . . . . . . . . . . 11 (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
27 1st2nd2 7722 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2827fveq2d 6668 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
29 df-ov 7153 . . . . . . . . . . . . . . . 16 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
3028, 29syl6eqr 2874 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
3130eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
3231adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
332, 4jca 514 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3433adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
35 xp1st 7715 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (1st𝑥) ∈ (𝐴[,]𝐵))
36 elicc1 12776 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
372, 4, 36syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
3837biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵))
3938simp2d 1139 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (1st𝑥))
4035, 39sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → 𝐴 ≤ (1st𝑥))
41 xp2nd 7716 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (2nd𝑥) ∈ (𝐴[,]𝐵))
42 iccleub 12786 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
43423expa 1114 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
4433, 41, 43syl2an 597 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (2nd𝑥) ≤ 𝐵)
45 ioossioo 12823 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 ≤ (1st𝑥) ∧ (2nd𝑥) ≤ 𝐵)) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4634, 40, 44, 45syl12anc 834 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4746sselda 3966 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 𝑡 ∈ (𝐴(,)𝐵))
4821ffvelrnda 6845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
4948adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
5047, 49syldan 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
51 ioombl 24160 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol)
53 fvexd 6679 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
5421feqmptd 6727 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5554, 18eqeltrrd 2914 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5655adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5746, 52, 53, 56iblss 24399 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
58 ax-resscn 10588 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
59 ssid 3988 . . . . . . . . . . . . . . . . . . . . 21 ℂ ⊆ ℂ
60 cncfss 23501 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
6158, 59, 60mp2an 690 . . . . . . . . . . . . . . . . . . . 20 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
62 abscncf 23503 . . . . . . . . . . . . . . . . . . . 20 abs ∈ (ℂ–cn→ℝ)
6361, 62sselii 3963 . . . . . . . . . . . . . . . . . . 19 abs ∈ (ℂ–cn→ℂ)
6463a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → abs ∈ (ℂ–cn→ℂ))
6554reseq1d 5846 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6665adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6746resmptd 5902 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6866, 67eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6919adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
70 rescncf 23499 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵) → ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)))
7146, 69, 70sylc 65 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7268, 71eqeltrrd 2914 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7364, 72cncfmpt1f 23515 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
74 cnmbf 24254 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7551, 73, 74sylancr 589 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7650, 57itgcl 24378 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
7776cjcld 14549 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ)
78 ioossre 12792 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℝ
7978, 58sstri 3975 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ
80 cncfmptc 23513 . . . . . . . . . . . . . . . . . . . 20 (((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ ∧ ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8179, 59, 80mp3an23 1449 . . . . . . . . . . . . . . . . . . 19 ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8277, 81syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
83 nfcv 2977 . . . . . . . . . . . . . . . . . . . 20 𝑠((ℝ D 𝐹)‘𝑡)
84 nfcsb1v 3906 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)
85 csbeq1a 3896 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑠 → ((ℝ D 𝐹)‘𝑡) = 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8683, 84, 85cbvmpt 5159 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) = (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8786, 72eqeltrrid 2918 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8882, 87mulcncf 24041 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
89 cnmbf 24254 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9051, 88, 89sylancr 589 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9150, 57, 75, 90itgabsnc 34955 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡)
9250abscld 14790 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → (abs‘((ℝ D 𝐹)‘𝑡)) ∈ ℝ)
93 fvexd 6679 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ V)
9493, 57, 75iblabsnc 34950 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ 𝐿1)
9550absge0d 14798 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑡)))
9692, 94, 95itgposval 24390 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡 = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
9791, 96breqtrd 5084 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
98 itgeq1 24367 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 = ∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡)
9998fveq2d 6668 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) = (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡))
100 eleq2 2901 . . . . . . . . . . . . . . . . . 18 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↔ 𝑡𝑠))
101100ifbid 4488 . . . . . . . . . . . . . . . . 17 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0) = if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))
102101mpteq2dv 5154 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))
103102fveq2d 6668 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
10499, 103breq12d 5071 . . . . . . . . . . . . . 14 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ((abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) ↔ (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10597, 104syl5ibcom 247 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10632, 105sylbid 242 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
107106rexlimdva 3284 . . . . . . . . . . 11 (𝜑 → (∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10826, 107syl5 34 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
109108ralrimiv 3181 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
11014, 1, 3, 5, 15, 17, 18, 21, 109ftc1anc 34969 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
111 ftc2nc.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
112 cncff 23495 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
114113feqmptd 6727 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
115114, 111eqeltrrd 2914 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11611, 13, 110, 115cncfmpt2f 23516 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11758a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
118 iccssre 12812 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1191, 3, 118syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
120 fvexd 6679 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
1213adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
122121rexrd 10685 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
123 elicc2 12795 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1241, 3, 123syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
125124biimpa 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
126125simp3d 1140 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
127 iooss2 12768 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
128122, 126, 127syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
129 ioombl 24160 . . . . . . . . . . . . . 14 (𝐴(,)𝑥) ∈ dom vol
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
131 fvexd 6679 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
13255adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
133128, 130, 131, 132iblss 24399 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
134120, 133itgcl 24378 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
135113ffvelrnda 6845 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
136134, 135subcld 10991 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) ∈ ℂ)
13711tgioo2 23405 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
138 iccntr 23423 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1391, 3, 138syl2anc 586 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
140117, 119, 136, 137, 11, 139dvmptntr 24562 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))))
141 reelprrecn 10623 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
142141a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
143 ioossicc 12816 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
144143sseli 3962 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
145144, 134sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
14621ffvelrnda 6845 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
14714, 1, 3, 5, 19, 18ftc1cnnc 34960 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹))
148117, 119, 134, 137, 11, 139dvmptntr 24562 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)))
14921feqmptd 6727 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
150147, 148, 1493eqtr3d 2864 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
151144, 135sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
152114oveq2d 7166 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))))
153117, 119, 135, 137, 11, 139dvmptntr 24562 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))))
154152, 149, 1533eqtr3rd 2865 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
155142, 145, 146, 150, 151, 146, 154dvmptsub 24558 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))))
156146subidd 10979 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0)
157156mpteq2dva 5153 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
158140, 155, 1573eqtrd 2860 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
159 fconstmpt 5608 . . . . . . . 8 ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)
160158, 159syl6eqr 2874 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = ((𝐴(,)𝐵) × {0}))
1611, 3, 116, 160dveq0 24591 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)}))
162161fveq1d 6666 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵))
163 oveq2 7158 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵))
164 itgeq1 24367 . . . . . . . . 9 ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
165163, 164syl 17 . . . . . . . 8 (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
166 fveq2 6664 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
167165, 166oveq12d 7168 . . . . . . 7 (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
168 eqid 2821 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))
169 ovex 7183 . . . . . . 7 (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) ∈ V
170167, 168, 169fvmpt 6762 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
1717, 170syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
172162, 171eqtr3d 2858 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
173 lbicc2 12846 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1742, 4, 5, 173syl3anc 1367 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
175 oveq2 7158 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴))
176 iooid 12760 . . . . . . . . . . 11 (𝐴(,)𝐴) = ∅
177175, 176syl6eq 2872 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅)
178 itgeq1 24367 . . . . . . . . . 10 ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
179177, 178syl 17 . . . . . . . . 9 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
180 itg0 24374 . . . . . . . . 9 ∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0
181179, 180syl6eq 2872 . . . . . . . 8 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0)
182 fveq2 6664 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
183181, 182oveq12d 7168 . . . . . . 7 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (0 − (𝐹𝐴)))
184 df-neg 10867 . . . . . . 7 -(𝐹𝐴) = (0 − (𝐹𝐴))
185183, 184syl6eqr 2874 . . . . . 6 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = -(𝐹𝐴))
186 negex 10878 . . . . . 6 -(𝐹𝐴) ∈ V
187185, 168, 186fvmpt 6762 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
188174, 187syl 17 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
18910, 172, 1883eqtr3d 2864 . . 3 (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) = -(𝐹𝐴))
190189oveq2d 7166 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ((𝐹𝐵) + -(𝐹𝐴)))
191113, 7ffvelrnd 6846 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
192 fvexd 6679 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
193192, 55itgcl 24378 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
194191, 193pncan3d 10994 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
195113, 174ffvelrnd 6846 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
196191, 195negsubd 10997 . 2 (𝜑 → ((𝐹𝐵) + -(𝐹𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
197190, 194, 1963eqtr3d 2864 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  csb 3882  wss 3935  c0 4290  ifcif 4466  𝒫 cpw 4538  {csn 4560  {cpr 4562  cop 4566   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  ran crn 5550  cres 5551  cima 5552  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536  *cxr 10668  cle 10670  cmin 10864  -cneg 10865  (,)cioo 12732  [,]cicc 12735  ccj 14449  abscabs 14587  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  intcnt 21619   Cn ccn 21826   ×t ctx 22162  cnccncf 23478  volcvol 24058  MblFncmbf 24209  2citg2 24211  𝐿1cibl 24212  citg 24213   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-itg 24218  df-0p 24265  df-limc 24458  df-dv 24459
This theorem is referenced by:  areacirc  34981
  Copyright terms: Public domain W3C validator