Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   GIF version

Theorem ftc2nc 37682
Description: Choice-free proof of ftc2 25949. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a (𝜑𝐴 ∈ ℝ)
ftc2nc.b (𝜑𝐵 ∈ ℝ)
ftc2nc.le (𝜑𝐴𝐵)
ftc2nc.c (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc2nc.i (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
ftc2nc.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
ftc2nc (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡

Proof of Theorem ftc2nc
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 11165 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 ftc2nc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 11165 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
5 ftc2nc.le . . . . . 6 (𝜑𝐴𝐵)
6 ubicc2 13368 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1373 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
8 fvex 6835 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) ∈ V
98fvconst2 7140 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
107, 9syl 17 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴))
11 eqid 2729 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211subcn 24753 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1312a1i 11 . . . . . . . 8 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
14 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)
15 ssidd 3959 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 13310 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc2nc.i . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
19 ftc2nc.c . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 24784 . . . . . . . . . 10 ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
22 ioof 13350 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
23 ffun 6655 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
2422, 23ax-mp 5 . . . . . . . . . . . 12 Fun (,)
25 fvelima 6888 . . . . . . . . . . . 12 ((Fun (,) ∧ 𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
2624, 25mpan 690 . . . . . . . . . . 11 (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠)
27 1st2nd2 7963 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2827fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
29 df-ov 7352 . . . . . . . . . . . . . . . 16 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
3028, 29eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
3130eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
3231adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 ↔ ((1st𝑥)(,)(2nd𝑥)) = 𝑠))
332, 4jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
35 xp1st 7956 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (1st𝑥) ∈ (𝐴[,]𝐵))
36 elicc1 13292 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
372, 4, 36syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (𝐴[,]𝐵) ↔ ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵)))
3837biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → ((1st𝑥) ∈ ℝ*𝐴 ≤ (1st𝑥) ∧ (1st𝑥) ≤ 𝐵))
3938simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (1st𝑥) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (1st𝑥))
4035, 39sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → 𝐴 ≤ (1st𝑥))
41 xp2nd 7957 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵)) → (2nd𝑥) ∈ (𝐴[,]𝐵))
42 iccleub 13304 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
43423expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (2nd𝑥) ∈ (𝐴[,]𝐵)) → (2nd𝑥) ≤ 𝐵)
4433, 41, 43syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (2nd𝑥) ≤ 𝐵)
45 ioossioo 13344 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 ≤ (1st𝑥) ∧ (2nd𝑥) ≤ 𝐵)) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4634, 40, 44, 45syl12anc 836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵))
4746sselda 3935 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 𝑡 ∈ (𝐴(,)𝐵))
4821ffvelcdmda 7018 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
4948adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
5047, 49syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ ℂ)
51 ioombl 25464 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol)
53 fvexd 6837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
5421feqmptd 6891 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)))
5554, 18eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
5746, 52, 53, 56iblss 25704 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
58 ax-resscn 11066 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
59 ssid 3958 . . . . . . . . . . . . . . . . . . . . 21 ℂ ⊆ ℂ
60 cncfss 24790 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
6158, 59, 60mp2an 692 . . . . . . . . . . . . . . . . . . . 20 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
62 abscncf 24792 . . . . . . . . . . . . . . . . . . . 20 abs ∈ (ℂ–cn→ℝ)
6361, 62sselii 3932 . . . . . . . . . . . . . . . . . . 19 abs ∈ (ℂ–cn→ℂ)
6463a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → abs ∈ (ℂ–cn→ℂ))
6554reseq1d 5929 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6665adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))))
6746resmptd 5991 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6866, 67eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) = (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)))
6919adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
70 rescncf 24788 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥)(,)(2nd𝑥)) ⊆ (𝐴(,)𝐵) → ((ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)))
7146, 69, 70sylc 65 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ((ℝ D 𝐹) ↾ ((1st𝑥)(,)(2nd𝑥))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7268, 71eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
7364, 72cncfmpt1f 24805 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
74 cnmbf 25558 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7551, 73, 74sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
7650, 57itgcl 25683 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
7776cjcld 15103 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ)
78 ioossre 13310 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℝ
7978, 58sstri 3945 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ
80 cncfmptc 24803 . . . . . . . . . . . . . . . . . . . 20 (((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ ∧ ((1st𝑥)(,)(2nd𝑥)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8179, 59, 80mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ℂ → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8277, 81syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
83 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑠((ℝ D 𝐹)‘𝑡)
84 nfcsb1v 3875 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)
85 csbeq1a 3865 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑠 → ((ℝ D 𝐹)‘𝑡) = 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8683, 84, 85cbvmpt 5194 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((ℝ D 𝐹)‘𝑡)) = (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))
8786, 72eqeltrrid 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡)) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
8882, 87mulcncf 25344 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ))
89 cnmbf 25558 . . . . . . . . . . . . . . . . 17 ((((1st𝑥)(,)(2nd𝑥)) ∈ dom vol ∧ (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ (((1st𝑥)(,)(2nd𝑥))–cn→ℂ)) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9051, 88, 89sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑠 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ ((∗‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) · 𝑠 / 𝑡((ℝ D 𝐹)‘𝑡))) ∈ MblFn)
9150, 57, 75, 90itgabsnc 37669 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡)
9250abscld 15346 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → (abs‘((ℝ D 𝐹)‘𝑡)) ∈ ℝ)
93 fvexd 6837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → ((ℝ D 𝐹)‘𝑡) ∈ V)
9493, 57, 75iblabsnc 37664 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↦ (abs‘((ℝ D 𝐹)‘𝑡))) ∈ 𝐿1)
9550absge0d 15354 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) ∧ 𝑡 ∈ ((1st𝑥)(,)(2nd𝑥))) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑡)))
9692, 94, 95itgposval 25695 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → ∫((1st𝑥)(,)(2nd𝑥))(abs‘((ℝ D 𝐹)‘𝑡)) d𝑡 = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
9791, 96breqtrd 5118 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
98 itgeq1 25672 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡 = ∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡)
9998fveq2d 6826 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) = (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡))
100 eleq2 2817 . . . . . . . . . . . . . . . . . 18 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)) ↔ 𝑡𝑠))
101100ifbid 4500 . . . . . . . . . . . . . . . . 17 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0) = if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))
102101mpteq2dv 5186 . . . . . . . . . . . . . . . 16 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))
103102fveq2d 6826 . . . . . . . . . . . . . . 15 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
10499, 103breq12d 5105 . . . . . . . . . . . . . 14 (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → ((abs‘∫((1st𝑥)(,)(2nd𝑥))((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ((1st𝑥)(,)(2nd𝑥)), (abs‘((ℝ D 𝐹)‘𝑡)), 0))) ↔ (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10597, 104syl5ibcom 245 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((1st𝑥)(,)(2nd𝑥)) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10632, 105sylbid 240 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
107106rexlimdva 3130 . . . . . . . . . . 11 (𝜑 → (∃𝑥 ∈ ((𝐴[,]𝐵) × (𝐴[,]𝐵))((,)‘𝑥) = 𝑠 → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
10826, 107syl5 34 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) → (abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0)))))
109108ralrimiv 3120 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠((ℝ D 𝐹)‘𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘((ℝ D 𝐹)‘𝑡)), 0))))
11014, 1, 3, 5, 15, 17, 18, 21, 109ftc1anc 37681 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
111 ftc2nc.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
112 cncff 24784 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
114113feqmptd 6891 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
115114, 111eqeltrrd 2829 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11611, 13, 110, 115cncfmpt2f 24806 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11758a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
118 iccssre 13332 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1191, 3, 118syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
120 fvexd 6837 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
1213adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
122121rexrd 11165 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
123 elicc2 13314 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1241, 3, 123syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
125124biimpa 476 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
126125simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
127 iooss2 13284 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
128122, 126, 127syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
129 ioombl 25464 . . . . . . . . . . . . . 14 (𝐴(,)𝑥) ∈ dom vol
130129a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
131 fvexd 6837 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
13255adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
133128, 130, 131, 132iblss 25704 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1)
134120, 133itgcl 25683 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
135113ffvelcdmda 7018 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
136134, 135subcld 11475 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) ∈ ℂ)
137 tgioo4 24691 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
138 iccntr 24708 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1391, 3, 138syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
140117, 119, 136, 137, 11, 139dvmptntr 25873 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))))
141 reelprrecn 11101 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
142141a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
143 ioossicc 13336 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
144143sseli 3931 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
145144, 134sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
14621ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
14714, 1, 3, 5, 19, 18ftc1cnnc 37672 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D 𝐹))
148117, 119, 134, 137, 11, 139dvmptntr 25873 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)))
14921feqmptd 6891 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
150147, 148, 1493eqtr3d 2772 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
151144, 135sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
152114oveq2d 7365 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))))
153117, 119, 135, 137, 11, 139dvmptntr 25873 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))))
154152, 149, 1533eqtr3rd 2773 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)))
155142, 145, 146, 150, 151, 146, 154dvmptsub 25869 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))))
156146subidd 11463 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥)) = 0)
157156mpteq2dva 5185 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑥) − ((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
158140, 155, 1573eqtrd 2768 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
159 fconstmpt 5681 . . . . . . . 8 ((𝐴(,)𝐵) × {0}) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0)
160158, 159eqtr4di 2782 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))) = ((𝐴(,)𝐵) × {0}))
1611, 3, 116, 160dveq0 25903 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = ((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)}))
162161fveq1d 6824 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵))
163 oveq2 7357 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴(,)𝑥) = (𝐴(,)𝐵))
164 itgeq1 25672 . . . . . . . . 9 ((𝐴(,)𝑥) = (𝐴(,)𝐵) → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
165163, 164syl 17 . . . . . . . 8 (𝑥 = 𝐵 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
166 fveq2 6822 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
167165, 166oveq12d 7367 . . . . . . 7 (𝑥 = 𝐵 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
168 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))
169 ovex 7382 . . . . . . 7 (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) ∈ V
170167, 168, 169fvmpt 6930 . . . . . 6 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
1717, 170syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
172162, 171eqtr3d 2766 . . . 4 (𝜑 → (((𝐴[,]𝐵) × {((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴)})‘𝐵) = (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)))
173 lbicc2 13367 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1742, 4, 5, 173syl3anc 1373 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
175 oveq2 7357 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝐴(,)𝑥) = (𝐴(,)𝐴))
176 iooid 13276 . . . . . . . . . . 11 (𝐴(,)𝐴) = ∅
177175, 176eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴(,)𝑥) = ∅)
178 itgeq1 25672 . . . . . . . . . 10 ((𝐴(,)𝑥) = ∅ → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
179177, 178syl 17 . . . . . . . . 9 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = ∫∅((ℝ D 𝐹)‘𝑡) d𝑡)
180 itg0 25679 . . . . . . . . 9 ∫∅((ℝ D 𝐹)‘𝑡) d𝑡 = 0
181179, 180eqtrdi 2780 . . . . . . . 8 (𝑥 = 𝐴 → ∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 = 0)
182 fveq2 6822 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
183181, 182oveq12d 7367 . . . . . . 7 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = (0 − (𝐹𝐴)))
184 df-neg 11350 . . . . . . 7 -(𝐹𝐴) = (0 − (𝐹𝐴))
185183, 184eqtr4di 2782 . . . . . 6 (𝑥 = 𝐴 → (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)) = -(𝐹𝐴))
186 negex 11361 . . . . . 6 -(𝐹𝐴) ∈ V
187185, 168, 186fvmpt 6930 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
188174, 187syl 17 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ↦ (∫(𝐴(,)𝑥)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝑥)))‘𝐴) = -(𝐹𝐴))
18910, 172, 1883eqtr3d 2772 . . 3 (𝜑 → (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵)) = -(𝐹𝐴))
190189oveq2d 7365 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ((𝐹𝐵) + -(𝐹𝐴)))
191113, 7ffvelcdmd 7019 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
192 fvexd 6837 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑡) ∈ V)
193192, 55itgcl 25683 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 ∈ ℂ)
194191, 193pncan3d 11478 . 2 (𝜑 → ((𝐹𝐵) + (∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 − (𝐹𝐵))) = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
195113, 174ffvelcdmd 7019 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
196191, 195negsubd 11481 . 2 (𝜑 → ((𝐹𝐵) + -(𝐹𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
197190, 194, 1963eqtr3d 2772 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  csb 3851  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014  *cxr 11148  cle 11150  cmin 11347  -cneg 11348  (,)cioo 13248  [,]cicc 13251  ccj 15003  abscabs 15141  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  intcnt 22902   Cn ccn 23109   ×t ctx 23445  cnccncf 24767  volcvol 25362  MblFncmbf 25513  2citg2 25515  𝐿1cibl 25516  citg 25517   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766
This theorem is referenced by:  areacirc  37693
  Copyright terms: Public domain W3C validator