| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natfn | Structured version Visualization version GIF version | ||
| Description: A natural transformation is a function on the objects of 𝐶. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| natfn | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 17862 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥))) |
| 6 | ixpfn 8830 | . 2 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥)) → 𝐴 Fn 𝐵) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 Xcixp 8824 Basecbs 17120 Hom chom 17172 Nat cnat 17851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-ixp 8825 df-func 17765 df-nat 17853 |
| This theorem is referenced by: fuclid 17876 fucrid 17877 curfuncf 18144 yonedainv 18187 yonffthlem 18188 natoppf 49214 fucorid2 49348 precofval2 49354 termcnatval 49520 funcsn 49526 0fucterm 49528 |
| Copyright terms: Public domain | W3C validator |