| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natfn | Structured version Visualization version GIF version | ||
| Description: A natural transformation is a function on the objects of 𝐶. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| natfn | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 17893 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥))) |
| 6 | ixpfn 8853 | . 2 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥)) → 𝐴 Fn 𝐵) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 Xcixp 8847 Basecbs 17155 Hom chom 17207 Nat cnat 17882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-ixp 8848 df-func 17796 df-nat 17884 |
| This theorem is referenced by: fuclid 17907 fucrid 17908 curfuncf 18175 yonedainv 18218 yonffthlem 18219 natoppf 49191 fucorid2 49325 precofval2 49331 termcnatval 49497 funcsn 49503 0fucterm 49505 |
| Copyright terms: Public domain | W3C validator |