|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > natfn | Structured version Visualization version GIF version | ||
| Description: A natural transformation is a function on the objects of 𝐶. (Contributed by Mario Carneiro, 6-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | 
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) | 
| Ref | Expression | 
|---|---|
| natfn | ⊢ (𝜑 → 𝐴 Fn 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 18001 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥))) | 
| 6 | ixpfn 8944 | . 2 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥)) → 𝐴 Fn 𝐵) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 Fn 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4631 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 Xcixp 8938 Basecbs 17248 Hom chom 17309 Nat cnat 17990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-ixp 8939 df-func 17904 df-nat 17992 | 
| This theorem is referenced by: fuclid 18015 fucrid 18016 curfuncf 18284 yonedainv 18327 yonffthlem 18328 fucorid2 49081 precofval2 49087 termcnatval 49193 | 
| Copyright terms: Public domain | W3C validator |