Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > natfn | Structured version Visualization version GIF version |
Description: A natural transformation is a function on the objects of 𝐶. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
natfn | ⊢ (𝜑 → 𝐴 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | eqid 2739 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | 1, 2, 3, 4 | natixp 17649 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥))) |
6 | ixpfn 8665 | . 2 ⊢ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥)) → 𝐴 Fn 𝐵) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 〈cop 4572 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 Xcixp 8659 Basecbs 16893 Hom chom 16954 Nat cnat 17638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-ixp 8660 df-func 17554 df-nat 17640 |
This theorem is referenced by: fuclid 17665 fucrid 17666 curfuncf 17937 yonedainv 17980 yonffthlem 17981 |
Copyright terms: Public domain | W3C validator |