Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > kbop | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbop | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kbfval 30215 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | |
2 | hicl 29343 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) | |
3 | hvmulcl 29276 | . . . 4 ⊢ (((𝑥 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) | |
4 | 2, 3 | sylan 579 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
5 | 4 | an31s 650 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
6 | 1, 5 | fmpt3d 6972 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⟶wf 6414 (class class class)co 7255 ℂcc 10800 ℋchba 29182 ·ℎ csm 29184 ·ih csp 29185 ketbra ck 29220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hilex 29262 ax-hfvmul 29268 ax-hfi 29342 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-kb 30114 |
This theorem is referenced by: kbpj 30219 kbass2 30380 kbass5 30383 |
Copyright terms: Public domain | W3C validator |