![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbop | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉 〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbop | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl 28493 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) | |
2 | hvmulcl 28426 | . . . . 5 ⊢ (((𝑥 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) | |
3 | 1, 2 | sylan 577 | . . . 4 ⊢ (((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
4 | 3 | an31s 646 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
5 | 4 | fmpttd 6635 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)): ℋ⟶ ℋ) |
6 | kbfval 29367 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | |
7 | 6 | feq1d 6264 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ketbra 𝐵): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)): ℋ⟶ ℋ)) |
8 | 5, 7 | mpbird 249 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ↦ cmpt 4953 ⟶wf 6120 (class class class)co 6906 ℂcc 10251 ℋchba 28332 ·ℎ csm 28334 ·ih csp 28335 ketbra ck 28370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pr 5128 ax-hilex 28412 ax-hfvmul 28418 ax-hfi 28492 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-kb 29266 |
This theorem is referenced by: kbpj 29371 kbass2 29532 kbass5 29535 |
Copyright terms: Public domain | W3C validator |