| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbop | Structured version Visualization version GIF version | ||
| Description: The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbop | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbfval 31914 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | |
| 2 | hicl 31042 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) | |
| 3 | hvmulcl 30975 | . . . 4 ⊢ (((𝑥 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) | |
| 4 | 2, 3 | sylan 580 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
| 5 | 4 | an31s 654 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) ∈ ℋ) |
| 6 | 1, 5 | fmpt3d 7054 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⟶wf 6482 (class class class)co 7353 ℂcc 11026 ℋchba 30881 ·ℎ csm 30883 ·ih csp 30884 ketbra ck 30919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-hilex 30961 ax-hfvmul 30967 ax-hfi 31041 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-kb 31813 |
| This theorem is referenced by: kbpj 31918 kbass2 32079 kbass5 32082 |
| Copyright terms: Public domain | W3C validator |