![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqsat | Structured version Visualization version GIF version |
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23746). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqsat | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqffn 23754 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
3 | elpreima 7091 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
6 | 1 | kqfvima 23759 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
7 | 6 | 3expa 1118 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
8 | 7 | biimprd 248 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → 𝑧 ∈ 𝑈)) |
9 | 8 | expimpd 453 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
10 | 5, 9 | sylbid 240 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
11 | 10 | ssrdv 4014 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ 𝑈) |
12 | toponss 22954 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ 𝑋) | |
13 | 2 | fndmd 6684 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋) |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → dom 𝐹 = 𝑋) |
15 | 12, 14 | sseqtrrd 4050 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ dom 𝐹) |
16 | sseqin2 4244 | . . . 4 ⊢ (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑈) = 𝑈) | |
17 | 15, 16 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (dom 𝐹 ∩ 𝑈) = 𝑈) |
18 | dminss 6184 | . . 3 ⊢ (dom 𝐹 ∩ 𝑈) ⊆ (◡𝐹 “ (𝐹 “ 𝑈)) | |
19 | 17, 18 | eqsstrrdi 4064 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ (◡𝐹 “ (𝐹 “ 𝑈))) |
20 | 11, 19 | eqssd 4026 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∩ cin 3975 ⊆ wss 3976 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fn wfn 6568 ‘cfv 6573 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-topon 22938 |
This theorem is referenced by: kqopn 23763 kqreglem2 23771 kqnrmlem2 23773 |
Copyright terms: Public domain | W3C validator |