MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqsat Structured version   Visualization version   GIF version

Theorem kqsat 23641
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23627). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23635 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 6986 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
61kqfvima 23640 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
763expa 1118 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
87biimprd 248 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
98expimpd 453 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
105, 9sylbid 240 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
1110ssrdv 3935 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
12 toponss 22837 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
132fndmd 6581 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
1413adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
1512, 14sseqtrrd 3967 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ dom 𝐹)
16 sseqin2 4168 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
1715, 16sylib 218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (dom 𝐹𝑈) = 𝑈)
18 dminss 6095 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
1917, 18eqsstrrdi 3975 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
2011, 19eqssd 3947 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cin 3896  wss 3897  cmpt 5167  ccnv 5610  dom cdm 5611  cima 5614   Fn wfn 6471  cfv 6476  TopOnctopon 22820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-topon 22821
This theorem is referenced by:  kqopn  23644  kqreglem2  23652  kqnrmlem2  23654
  Copyright terms: Public domain W3C validator