| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqsat | Structured version Visualization version GIF version | ||
| Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23611). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqsat | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 2 | 1 | kqffn 23619 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 3 | elpreima 7033 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
| 6 | 1 | kqfvima 23624 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
| 7 | 6 | 3expa 1118 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
| 8 | 7 | biimprd 248 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → 𝑧 ∈ 𝑈)) |
| 9 | 8 | expimpd 453 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
| 10 | 5, 9 | sylbid 240 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
| 11 | 10 | ssrdv 3955 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ 𝑈) |
| 12 | toponss 22821 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ 𝑋) | |
| 13 | 2 | fndmd 6626 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → dom 𝐹 = 𝑋) |
| 15 | 12, 14 | sseqtrrd 3987 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ dom 𝐹) |
| 16 | sseqin2 4189 | . . . 4 ⊢ (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑈) = 𝑈) | |
| 17 | 15, 16 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (dom 𝐹 ∩ 𝑈) = 𝑈) |
| 18 | dminss 6129 | . . 3 ⊢ (dom 𝐹 ∩ 𝑈) ⊆ (◡𝐹 “ (𝐹 “ 𝑈)) | |
| 19 | 17, 18 | eqsstrrdi 3995 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ (◡𝐹 “ (𝐹 “ 𝑈))) |
| 20 | 11, 19 | eqssd 3967 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Fn wfn 6509 ‘cfv 6514 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: kqopn 23628 kqreglem2 23636 kqnrmlem2 23638 |
| Copyright terms: Public domain | W3C validator |