MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqsat Structured version   Visualization version   GIF version

Theorem kqsat 22336
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 22322). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 22330 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 6805 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
61kqfvima 22335 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
763expa 1115 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
87biimprd 251 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
98expimpd 457 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
105, 9sylbid 243 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
1110ssrdv 3921 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
12 toponss 21532 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
132fndmd 6427 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
1413adantr 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
1512, 14sseqtrrd 3956 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ dom 𝐹)
16 sseqin2 4142 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
1715, 16sylib 221 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (dom 𝐹𝑈) = 𝑈)
18 dminss 5977 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
1917, 18eqsstrrdi 3970 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
2011, 19eqssd 3932 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  cin 3880  wss 3881  cmpt 5110  ccnv 5518  dom cdm 5519  cima 5522   Fn wfn 6319  cfv 6324  TopOnctopon 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-topon 21516
This theorem is referenced by:  kqopn  22339  kqreglem2  22347  kqnrmlem2  22349
  Copyright terms: Public domain W3C validator