MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqsat Structured version   Visualization version   GIF version

Theorem kqsat 23674
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23660). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23668 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 7053 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
61kqfvima 23673 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
763expa 1118 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → (𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹𝑈)))
87biimprd 248 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
98expimpd 453 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
105, 9sylbid 240 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
1110ssrdv 3969 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
12 toponss 22870 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
132fndmd 6648 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
1413adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
1512, 14sseqtrrd 4001 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ dom 𝐹)
16 sseqin2 4203 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
1715, 16sylib 218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (dom 𝐹𝑈) = 𝑈)
18 dminss 6147 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
1917, 18eqsstrrdi 4009 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
2011, 19eqssd 3981 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  cin 3930  wss 3931  cmpt 5206  ccnv 5658  dom cdm 5659  cima 5662   Fn wfn 6531  cfv 6536  TopOnctopon 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-topon 22854
This theorem is referenced by:  kqopn  23677  kqreglem2  23685  kqnrmlem2  23687
  Copyright terms: Public domain W3C validator