Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdslcmf | Structured version Visualization version GIF version |
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
Ref | Expression |
---|---|
dvdslcmf | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3893 | . . . . . . 7 ⊢ (𝑍 ⊆ ℤ → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) | |
2 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
3 | 2 | imp 410 | . . . . 5 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ ℤ) |
4 | dvds0 15833 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ 0) |
6 | lcmf0val 16179 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | |
7 | 6 | ad4ant13 751 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → (lcm‘𝑍) = 0) |
8 | 5, 7 | breqtrrd 5081 | . . 3 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ (lcm‘𝑍)) |
9 | 8 | ralrimiva 3105 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
10 | df-nel 3047 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
11 | lcmfcllem 16182 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) | |
12 | 11 | 3expa 1120 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
13 | 10, 12 | sylan2br 598 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
14 | lcmfn0cl 16183 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | |
15 | 14 | 3expa 1120 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
16 | 10, 15 | sylan2br 598 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
17 | breq2 5057 | . . . . . 6 ⊢ (𝑛 = (lcm‘𝑍) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (lcm‘𝑍))) | |
18 | 17 | ralbidv 3118 | . . . . 5 ⊢ (𝑛 = (lcm‘𝑍) → (∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
19 | 18 | elrab3 3603 | . . . 4 ⊢ ((lcm‘𝑍) ∈ ℕ → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
21 | 13, 20 | mpbid 235 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
22 | 9, 21 | pm2.61dan 813 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 ∀wral 3061 {crab 3065 ⊆ wss 3866 class class class wbr 5053 ‘cfv 6380 Fincfn 8626 0cc0 10729 ℕcn 11830 ℤcz 12176 ∥ cdvds 15815 lcmclcmf 16146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-prod 15468 df-dvds 15816 df-lcmf 16148 |
This theorem is referenced by: lcmf 16190 lcmfunsnlem2lem2 16196 lcmfdvdsb 16200 prmodvdslcmf 16600 prmgaplcmlem1 16604 lcmineqlem4 39774 |
Copyright terms: Public domain | W3C validator |