![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdslcmf | Structured version Visualization version GIF version |
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
Ref | Expression |
---|---|
dvdslcmf | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3988 | . . . . . . 7 ⊢ (𝑍 ⊆ ℤ → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) | |
2 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
3 | 2 | imp 406 | . . . . 5 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ ℤ) |
4 | dvds0 16305 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ 0) |
6 | lcmf0val 16655 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | |
7 | 6 | ad4ant13 751 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → (lcm‘𝑍) = 0) |
8 | 5, 7 | breqtrrd 5175 | . . 3 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ (lcm‘𝑍)) |
9 | 8 | ralrimiva 3143 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
10 | df-nel 3044 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
11 | lcmfcllem 16658 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) | |
12 | 11 | 3expa 1117 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
13 | 10, 12 | sylan2br 595 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
14 | lcmfn0cl 16659 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | |
15 | 14 | 3expa 1117 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
16 | 10, 15 | sylan2br 595 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
17 | breq2 5151 | . . . . . 6 ⊢ (𝑛 = (lcm‘𝑍) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (lcm‘𝑍))) | |
18 | 17 | ralbidv 3175 | . . . . 5 ⊢ (𝑛 = (lcm‘𝑍) → (∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
19 | 18 | elrab3 3695 | . . . 4 ⊢ ((lcm‘𝑍) ∈ ℕ → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
21 | 13, 20 | mpbid 232 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
22 | 9, 21 | pm2.61dan 813 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∉ wnel 3043 ∀wral 3058 {crab 3432 ⊆ wss 3962 class class class wbr 5147 ‘cfv 6562 Fincfn 8983 0cc0 11152 ℕcn 12263 ℤcz 12610 ∥ cdvds 16286 lcmclcmf 16622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-prod 15936 df-dvds 16287 df-lcmf 16624 |
This theorem is referenced by: lcmf 16666 lcmfunsnlem2lem2 16672 lcmfdvdsb 16676 prmodvdslcmf 17080 prmgaplcmlem1 17084 lcmineqlem4 42013 |
Copyright terms: Public domain | W3C validator |