![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdslcmf | Structured version Visualization version GIF version |
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
Ref | Expression |
---|---|
dvdslcmf | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3974 | . . . . . . 7 ⊢ (𝑍 ⊆ ℤ → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) | |
2 | 1 | ad2antrr 724 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
3 | 2 | imp 407 | . . . . 5 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ ℤ) |
4 | dvds0 16211 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ 0) |
6 | lcmf0val 16555 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | |
7 | 6 | ad4ant13 749 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → (lcm‘𝑍) = 0) |
8 | 5, 7 | breqtrrd 5175 | . . 3 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ (lcm‘𝑍)) |
9 | 8 | ralrimiva 3146 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
10 | df-nel 3047 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
11 | lcmfcllem 16558 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) | |
12 | 11 | 3expa 1118 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
13 | 10, 12 | sylan2br 595 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
14 | lcmfn0cl 16559 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | |
15 | 14 | 3expa 1118 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
16 | 10, 15 | sylan2br 595 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
17 | breq2 5151 | . . . . . 6 ⊢ (𝑛 = (lcm‘𝑍) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (lcm‘𝑍))) | |
18 | 17 | ralbidv 3177 | . . . . 5 ⊢ (𝑛 = (lcm‘𝑍) → (∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
19 | 18 | elrab3 3683 | . . . 4 ⊢ ((lcm‘𝑍) ∈ ℕ → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
21 | 13, 20 | mpbid 231 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
22 | 9, 21 | pm2.61dan 811 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 ∀wral 3061 {crab 3432 ⊆ wss 3947 class class class wbr 5147 ‘cfv 6540 Fincfn 8935 0cc0 11106 ℕcn 12208 ℤcz 12554 ∥ cdvds 16193 lcmclcmf 16522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-prod 15846 df-dvds 16194 df-lcmf 16524 |
This theorem is referenced by: lcmf 16566 lcmfunsnlem2lem2 16572 lcmfdvdsb 16576 prmodvdslcmf 16976 prmgaplcmlem1 16980 lcmineqlem4 40885 |
Copyright terms: Public domain | W3C validator |