Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdslcmf | Structured version Visualization version GIF version |
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
Ref | Expression |
---|---|
dvdslcmf | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . . . . 7 ⊢ (𝑍 ⊆ ℤ → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) | |
2 | 1 | ad2antrr 722 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ)) |
3 | 2 | imp 406 | . . . . 5 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ ℤ) |
4 | dvds0 15909 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ 0) |
6 | lcmf0val 16255 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | |
7 | 6 | ad4ant13 747 | . . . 4 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → (lcm‘𝑍) = 0) |
8 | 5, 7 | breqtrrd 5098 | . . 3 ⊢ ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥 ∈ 𝑍) → 𝑥 ∥ (lcm‘𝑍)) |
9 | 8 | ralrimiva 3107 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
10 | df-nel 3049 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
11 | lcmfcllem 16258 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) | |
12 | 11 | 3expa 1116 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
13 | 10, 12 | sylan2br 594 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛}) |
14 | lcmfn0cl 16259 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | |
15 | 14 | 3expa 1116 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
16 | 10, 15 | sylan2br 594 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm‘𝑍) ∈ ℕ) |
17 | breq2 5074 | . . . . . 6 ⊢ (𝑛 = (lcm‘𝑍) → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ (lcm‘𝑍))) | |
18 | 17 | ralbidv 3120 | . . . . 5 ⊢ (𝑛 = (lcm‘𝑍) → (∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
19 | 18 | elrab3 3618 | . . . 4 ⊢ ((lcm‘𝑍) ∈ ℕ → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ 𝑍 𝑥 ∥ 𝑛} ↔ ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍))) |
21 | 13, 20 | mpbid 231 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
22 | 9, 21 | pm2.61dan 809 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∀wral 3063 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 Fincfn 8691 0cc0 10802 ℕcn 11903 ℤcz 12249 ∥ cdvds 15891 lcmclcmf 16222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 df-dvds 15892 df-lcmf 16224 |
This theorem is referenced by: lcmf 16266 lcmfunsnlem2lem2 16272 lcmfdvdsb 16276 prmodvdslcmf 16676 prmgaplcmlem1 16680 lcmineqlem4 39968 |
Copyright terms: Public domain | W3C validator |