Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslcmf Structured version   Visualization version   GIF version

Theorem dvdslcmf 15985
 Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.)
Assertion
Ref Expression
dvdslcmf ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥𝑍 𝑥 ∥ (lcm𝑍))
Distinct variable group:   𝑥,𝑍

Proof of Theorem dvdslcmf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssel 3910 . . . . . . 7 (𝑍 ⊆ ℤ → (𝑥𝑍𝑥 ∈ ℤ))
21ad2antrr 725 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → (𝑥𝑍𝑥 ∈ ℤ))
32imp 410 . . . . 5 ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥𝑍) → 𝑥 ∈ ℤ)
4 dvds0 15637 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
53, 4syl 17 . . . 4 ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥𝑍) → 𝑥 ∥ 0)
6 lcmf0val 15976 . . . . 5 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)
76ad4ant13 750 . . . 4 ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥𝑍) → (lcm𝑍) = 0)
85, 7breqtrrd 5062 . . 3 ((((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) ∧ 𝑥𝑍) → 𝑥 ∥ (lcm𝑍))
98ralrimiva 3149 . 2 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → ∀𝑥𝑍 𝑥 ∥ (lcm𝑍))
10 df-nel 3092 . . . 4 (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍)
11 lcmfcllem 15979 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥𝑍 𝑥𝑛})
12113expa 1115 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥𝑍 𝑥𝑛})
1310, 12sylan2br 597 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥𝑍 𝑥𝑛})
14 lcmfn0cl 15980 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
15143expa 1115 . . . . 5 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → (lcm𝑍) ∈ ℕ)
1610, 15sylan2br 597 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → (lcm𝑍) ∈ ℕ)
17 breq2 5038 . . . . . 6 (𝑛 = (lcm𝑍) → (𝑥𝑛𝑥 ∥ (lcm𝑍)))
1817ralbidv 3162 . . . . 5 (𝑛 = (lcm𝑍) → (∀𝑥𝑍 𝑥𝑛 ↔ ∀𝑥𝑍 𝑥 ∥ (lcm𝑍)))
1918elrab3 3631 . . . 4 ((lcm𝑍) ∈ ℕ → ((lcm𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥𝑍 𝑥𝑛} ↔ ∀𝑥𝑍 𝑥 ∥ (lcm𝑍)))
2016, 19syl 17 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ((lcm𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑥𝑍 𝑥𝑛} ↔ ∀𝑥𝑍 𝑥 ∥ (lcm𝑍)))
2113, 20mpbid 235 . 2 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → ∀𝑥𝑍 𝑥 ∥ (lcm𝑍))
229, 21pm2.61dan 812 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥𝑍 𝑥 ∥ (lcm𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∉ wnel 3091  ∀wral 3106  {crab 3110   ⊆ wss 3883   class class class wbr 5034  ‘cfv 6332  Fincfn 8510  0cc0 10544  ℕcn 11643  ℤcz 11989   ∥ cdvds 15619  lcmclcmf 15943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-clim 14857  df-prod 15272  df-dvds 15620  df-lcmf 15945 This theorem is referenced by:  lcmf  15987  lcmfunsnlem2lem2  15993  lcmfdvdsb  15997  prmodvdslcmf  16393  prmgaplcmlem1  16397  lcmineqlem4  39471
 Copyright terms: Public domain W3C validator