Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat2 Structured version   Visualization version   GIF version

Theorem lsatcvat2 39033
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32416 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat2.s 𝑆 = (LSubSp‘𝑊)
lsatcvat2.p = (LSSum‘𝑊)
lsatcvat2.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat2.c 𝐶 = ( ⋖L𝑊)
lsatcvat2.w (𝜑𝑊 ∈ LVec)
lsatcvat2.u (𝜑𝑈𝑆)
lsatcvat2.q (𝜑𝑄𝐴)
lsatcvat2.r (𝜑𝑅𝐴)
lsatcvat2.n (𝜑𝑄𝑅)
lsatcvat2.l (𝜑𝑈𝐶(𝑄 𝑅))
Assertion
Ref Expression
lsatcvat2 (𝜑𝑈𝐴)

Proof of Theorem lsatcvat2
StepHypRef Expression
1 eqid 2735 . 2 (0g𝑊) = (0g𝑊)
2 lsatcvat2.s . 2 𝑆 = (LSubSp‘𝑊)
3 lsatcvat2.p . 2 = (LSSum‘𝑊)
4 lsatcvat2.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat2.w . 2 (𝜑𝑊 ∈ LVec)
6 lsatcvat2.u . 2 (𝜑𝑈𝑆)
7 lsatcvat2.q . 2 (𝜑𝑄𝐴)
8 lsatcvat2.r . 2 (𝜑𝑅𝐴)
9 lsatcvat2.n . . 3 (𝜑𝑄𝑅)
10 lsatcvat2.c . . . . 5 𝐶 = ( ⋖L𝑊)
11 lsatcvat2.l . . . . 5 (𝜑𝑈𝐶(𝑄 𝑅))
121, 3, 2, 4, 10, 5, 6, 7, 8, 11lsatcv1 39030 . . . 4 (𝜑 → (𝑈 = {(0g𝑊)} ↔ 𝑄 = 𝑅))
1312necon3bid 2983 . . 3 (𝜑 → (𝑈 ≠ {(0g𝑊)} ↔ 𝑄𝑅))
149, 13mpbird 257 . 2 (𝜑𝑈 ≠ {(0g𝑊)})
15 lveclmod 21123 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
165, 15syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
172, 4, 16, 7lsatlssel 38979 . . . 4 (𝜑𝑄𝑆)
182, 4, 16, 8lsatlssel 38979 . . . 4 (𝜑𝑅𝑆)
192, 3lsmcl 21100 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
2016, 17, 18, 19syl3anc 1370 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
212, 10, 5, 6, 20, 11lcvpss 39006 . 2 (𝜑𝑈 ⊊ (𝑄 𝑅))
221, 2, 3, 4, 5, 6, 7, 8, 14, 21lsatcvat 39032 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  0gc0g 17486  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LVecclvec 21119  LSAtomsclsa 38956  L clcv 39000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lcv 39001
This theorem is referenced by:  lsatcvat3  39034
  Copyright terms: Public domain W3C validator