Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat2 Structured version   Visualization version   GIF version

Theorem lsatcvat2 39030
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32331 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat2.s 𝑆 = (LSubSp‘𝑊)
lsatcvat2.p = (LSSum‘𝑊)
lsatcvat2.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat2.c 𝐶 = ( ⋖L𝑊)
lsatcvat2.w (𝜑𝑊 ∈ LVec)
lsatcvat2.u (𝜑𝑈𝑆)
lsatcvat2.q (𝜑𝑄𝐴)
lsatcvat2.r (𝜑𝑅𝐴)
lsatcvat2.n (𝜑𝑄𝑅)
lsatcvat2.l (𝜑𝑈𝐶(𝑄 𝑅))
Assertion
Ref Expression
lsatcvat2 (𝜑𝑈𝐴)

Proof of Theorem lsatcvat2
StepHypRef Expression
1 eqid 2729 . 2 (0g𝑊) = (0g𝑊)
2 lsatcvat2.s . 2 𝑆 = (LSubSp‘𝑊)
3 lsatcvat2.p . 2 = (LSSum‘𝑊)
4 lsatcvat2.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat2.w . 2 (𝜑𝑊 ∈ LVec)
6 lsatcvat2.u . 2 (𝜑𝑈𝑆)
7 lsatcvat2.q . 2 (𝜑𝑄𝐴)
8 lsatcvat2.r . 2 (𝜑𝑅𝐴)
9 lsatcvat2.n . . 3 (𝜑𝑄𝑅)
10 lsatcvat2.c . . . . 5 𝐶 = ( ⋖L𝑊)
11 lsatcvat2.l . . . . 5 (𝜑𝑈𝐶(𝑄 𝑅))
121, 3, 2, 4, 10, 5, 6, 7, 8, 11lsatcv1 39027 . . . 4 (𝜑 → (𝑈 = {(0g𝑊)} ↔ 𝑄 = 𝑅))
1312necon3bid 2969 . . 3 (𝜑 → (𝑈 ≠ {(0g𝑊)} ↔ 𝑄𝑅))
149, 13mpbird 257 . 2 (𝜑𝑈 ≠ {(0g𝑊)})
15 lveclmod 21010 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
165, 15syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
172, 4, 16, 7lsatlssel 38976 . . . 4 (𝜑𝑄𝑆)
182, 4, 16, 8lsatlssel 38976 . . . 4 (𝜑𝑅𝑆)
192, 3lsmcl 20987 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
2016, 17, 18, 19syl3anc 1373 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
212, 10, 5, 6, 20, 11lcvpss 39003 . 2 (𝜑𝑈 ⊊ (𝑄 𝑅))
221, 2, 3, 4, 5, 6, 7, 8, 14, 21lsatcvat 39029 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  0gc0g 17343  LSSumclsm 19513  LModclmod 20763  LSubSpclss 20834  LVecclvec 21006  LSAtomsclsa 38953  L clcv 38997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38955  df-lcv 38998
This theorem is referenced by:  lsatcvat3  39031
  Copyright terms: Public domain W3C validator