Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat2 | Structured version Visualization version GIF version |
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 30978 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat2.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lsatcvat2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat2.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat2.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat2.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
lsatcvat2.l | ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat2 | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
2 | lsatcvat2.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat2.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat2.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat2.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lsatcvat2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | lsatcvat2.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
8 | lsatcvat2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
9 | lsatcvat2.n | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
10 | lsatcvat2.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
11 | lsatcvat2.l | . . . . 5 ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) | |
12 | 1, 3, 2, 4, 10, 5, 6, 7, 8, 11 | lsatcv1 37308 | . . . 4 ⊢ (𝜑 → (𝑈 = {(0g‘𝑊)} ↔ 𝑄 = 𝑅)) |
13 | 12 | necon3bid 2985 | . . 3 ⊢ (𝜑 → (𝑈 ≠ {(0g‘𝑊)} ↔ 𝑄 ≠ 𝑅)) |
14 | 9, 13 | mpbird 256 | . 2 ⊢ (𝜑 → 𝑈 ≠ {(0g‘𝑊)}) |
15 | lveclmod 20466 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
16 | 5, 15 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
17 | 2, 4, 16, 7 | lsatlssel 37257 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
18 | 2, 4, 16, 8 | lsatlssel 37257 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
19 | 2, 3 | lsmcl 20443 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
20 | 16, 17, 18, 19 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
21 | 2, 10, 5, 6, 20, 11 | lcvpss 37284 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 21 | lsatcvat 37310 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {csn 4572 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 0gc0g 17239 LSSumclsm 19327 LModclmod 20221 LSubSpclss 20291 LVecclvec 20462 LSAtomsclsa 37234 ⋖L clcv 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-tpos 8104 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-0g 17241 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-grp 18668 df-minusg 18669 df-sbg 18670 df-subg 18840 df-cntz 19011 df-oppg 19038 df-lsm 19329 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-oppr 19949 df-dvdsr 19970 df-unit 19971 df-invr 20001 df-drng 20087 df-lmod 20223 df-lss 20292 df-lsp 20332 df-lvec 20463 df-lsatoms 37236 df-lcv 37279 |
This theorem is referenced by: lsatcvat3 37312 |
Copyright terms: Public domain | W3C validator |