Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat2 Structured version   Visualization version   GIF version

Theorem lsatcvat2 39044
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32316 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat2.s 𝑆 = (LSubSp‘𝑊)
lsatcvat2.p = (LSSum‘𝑊)
lsatcvat2.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat2.c 𝐶 = ( ⋖L𝑊)
lsatcvat2.w (𝜑𝑊 ∈ LVec)
lsatcvat2.u (𝜑𝑈𝑆)
lsatcvat2.q (𝜑𝑄𝐴)
lsatcvat2.r (𝜑𝑅𝐴)
lsatcvat2.n (𝜑𝑄𝑅)
lsatcvat2.l (𝜑𝑈𝐶(𝑄 𝑅))
Assertion
Ref Expression
lsatcvat2 (𝜑𝑈𝐴)

Proof of Theorem lsatcvat2
StepHypRef Expression
1 eqid 2729 . 2 (0g𝑊) = (0g𝑊)
2 lsatcvat2.s . 2 𝑆 = (LSubSp‘𝑊)
3 lsatcvat2.p . 2 = (LSSum‘𝑊)
4 lsatcvat2.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat2.w . 2 (𝜑𝑊 ∈ LVec)
6 lsatcvat2.u . 2 (𝜑𝑈𝑆)
7 lsatcvat2.q . 2 (𝜑𝑄𝐴)
8 lsatcvat2.r . 2 (𝜑𝑅𝐴)
9 lsatcvat2.n . . 3 (𝜑𝑄𝑅)
10 lsatcvat2.c . . . . 5 𝐶 = ( ⋖L𝑊)
11 lsatcvat2.l . . . . 5 (𝜑𝑈𝐶(𝑄 𝑅))
121, 3, 2, 4, 10, 5, 6, 7, 8, 11lsatcv1 39041 . . . 4 (𝜑 → (𝑈 = {(0g𝑊)} ↔ 𝑄 = 𝑅))
1312necon3bid 2969 . . 3 (𝜑 → (𝑈 ≠ {(0g𝑊)} ↔ 𝑄𝑅))
149, 13mpbird 257 . 2 (𝜑𝑈 ≠ {(0g𝑊)})
15 lveclmod 21013 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
165, 15syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
172, 4, 16, 7lsatlssel 38990 . . . 4 (𝜑𝑄𝑆)
182, 4, 16, 8lsatlssel 38990 . . . 4 (𝜑𝑅𝑆)
192, 3lsmcl 20990 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
2016, 17, 18, 19syl3anc 1373 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
212, 10, 5, 6, 20, 11lcvpss 39017 . 2 (𝜑𝑈 ⊊ (𝑄 𝑅))
221, 2, 3, 4, 5, 6, 7, 8, 14, 21lsatcvat 39043 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  0gc0g 17402  LSSumclsm 19564  LModclmod 20766  LSubSpclss 20837  LVecclvec 21009  LSAtomsclsa 38967  L clcv 39011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lcv 39012
This theorem is referenced by:  lsatcvat3  39045
  Copyright terms: Public domain W3C validator