Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat2 Structured version   Visualization version   GIF version

Theorem lsatcvat2 38749
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32320 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat2.s 𝑆 = (LSubSp‘𝑊)
lsatcvat2.p = (LSSum‘𝑊)
lsatcvat2.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat2.c 𝐶 = ( ⋖L𝑊)
lsatcvat2.w (𝜑𝑊 ∈ LVec)
lsatcvat2.u (𝜑𝑈𝑆)
lsatcvat2.q (𝜑𝑄𝐴)
lsatcvat2.r (𝜑𝑅𝐴)
lsatcvat2.n (𝜑𝑄𝑅)
lsatcvat2.l (𝜑𝑈𝐶(𝑄 𝑅))
Assertion
Ref Expression
lsatcvat2 (𝜑𝑈𝐴)

Proof of Theorem lsatcvat2
StepHypRef Expression
1 eqid 2726 . 2 (0g𝑊) = (0g𝑊)
2 lsatcvat2.s . 2 𝑆 = (LSubSp‘𝑊)
3 lsatcvat2.p . 2 = (LSSum‘𝑊)
4 lsatcvat2.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat2.w . 2 (𝜑𝑊 ∈ LVec)
6 lsatcvat2.u . 2 (𝜑𝑈𝑆)
7 lsatcvat2.q . 2 (𝜑𝑄𝐴)
8 lsatcvat2.r . 2 (𝜑𝑅𝐴)
9 lsatcvat2.n . . 3 (𝜑𝑄𝑅)
10 lsatcvat2.c . . . . 5 𝐶 = ( ⋖L𝑊)
11 lsatcvat2.l . . . . 5 (𝜑𝑈𝐶(𝑄 𝑅))
121, 3, 2, 4, 10, 5, 6, 7, 8, 11lsatcv1 38746 . . . 4 (𝜑 → (𝑈 = {(0g𝑊)} ↔ 𝑄 = 𝑅))
1312necon3bid 2975 . . 3 (𝜑 → (𝑈 ≠ {(0g𝑊)} ↔ 𝑄𝑅))
149, 13mpbird 256 . 2 (𝜑𝑈 ≠ {(0g𝑊)})
15 lveclmod 21084 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
165, 15syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
172, 4, 16, 7lsatlssel 38695 . . . 4 (𝜑𝑄𝑆)
182, 4, 16, 8lsatlssel 38695 . . . 4 (𝜑𝑅𝑆)
192, 3lsmcl 21061 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
2016, 17, 18, 19syl3anc 1368 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
212, 10, 5, 6, 20, 11lcvpss 38722 . 2 (𝜑𝑈 ⊊ (𝑄 𝑅))
221, 2, 3, 4, 5, 6, 7, 8, 14, 21lsatcvat 38748 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2930  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  0gc0g 17454  LSSumclsm 19632  LModclmod 20836  LSubSpclss 20908  LVecclvec 21080  LSAtomsclsa 38672  L clcv 38716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-cntz 19311  df-oppg 19340  df-lsm 19634  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-drng 20709  df-lmod 20838  df-lss 20909  df-lsp 20949  df-lvec 21081  df-lsatoms 38674  df-lcv 38717
This theorem is referenced by:  lsatcvat3  38750
  Copyright terms: Public domain W3C validator