Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcv1 Structured version   Visualization version   GIF version

Theorem lcv1 37503
Description: Covering property of a subspace plus an atom. (chcv1 31297 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcv1.s 𝑆 = (LSubSp‘𝑊)
lcv1.p = (LSSum‘𝑊)
lcv1.a 𝐴 = (LSAtoms‘𝑊)
lcv1.c 𝐶 = ( ⋖L𝑊)
lcv1.w (𝜑𝑊 ∈ LVec)
lcv1.u (𝜑𝑈𝑆)
lcv1.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lcv1 (𝜑 → (¬ 𝑄𝑈𝑈𝐶(𝑈 𝑄)))

Proof of Theorem lcv1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcv1.q . . . . 5 (𝜑𝑄𝐴)
2 lcv1.w . . . . . 6 (𝜑𝑊 ∈ LVec)
3 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2736 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
5 eqid 2736 . . . . . . 7 (0g𝑊) = (0g𝑊)
6 lcv1.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 37453 . . . . . 6 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})))
82, 7syl 17 . . . . 5 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})))
91, 8mpbid 231 . . . 4 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))
109adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))
11 lcv1.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
12 lcv1.p . . . . . 6 = (LSSum‘𝑊)
13 lcv1.c . . . . . 6 𝐶 = ( ⋖L𝑊)
142adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑊 ∈ LVec)
15143ad2ant1 1133 . . . . . 6 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑊 ∈ LVec)
16 lcv1.u . . . . . . . 8 (𝜑𝑈𝑆)
1716adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝑆)
18173ad2ant1 1133 . . . . . 6 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝑆)
19 eldifi 4086 . . . . . . 7 (𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → 𝑥 ∈ (Base‘𝑊))
20193ad2ant2 1134 . . . . . 6 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑥 ∈ (Base‘𝑊))
21 simp1r 1198 . . . . . . 7 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ 𝑄𝑈)
22 simp3 1138 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑄 = ((LSpan‘𝑊)‘{𝑥}))
2322sseq1d 3975 . . . . . . 7 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑄𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
2421, 23mtbid 323 . . . . . 6 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
253, 11, 4, 12, 13, 15, 18, 20, 24lsmcv2 37491 . . . . 5 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 ((LSpan‘𝑊)‘{𝑥})))
2622oveq2d 7373 . . . . 5 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑈 𝑄) = (𝑈 ((LSpan‘𝑊)‘{𝑥})))
2725, 26breqtrrd 5133 . . . 4 (((𝜑 ∧ ¬ 𝑄𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 𝑄))
2827rexlimdv3a 3156 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}) → 𝑈𝐶(𝑈 𝑄)))
2910, 28mpd 15 . 2 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝐶(𝑈 𝑄))
302adantr 481 . . . 4 ((𝜑𝑈𝐶(𝑈 𝑄)) → 𝑊 ∈ LVec)
3116adantr 481 . . . 4 ((𝜑𝑈𝐶(𝑈 𝑄)) → 𝑈𝑆)
32 lveclmod 20567 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
332, 32syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
3411, 6, 33, 1lsatlssel 37459 . . . . . 6 (𝜑𝑄𝑆)
3511, 12lsmcl 20544 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈 𝑄) ∈ 𝑆)
3633, 16, 34, 35syl3anc 1371 . . . . 5 (𝜑 → (𝑈 𝑄) ∈ 𝑆)
3736adantr 481 . . . 4 ((𝜑𝑈𝐶(𝑈 𝑄)) → (𝑈 𝑄) ∈ 𝑆)
38 simpr 485 . . . 4 ((𝜑𝑈𝐶(𝑈 𝑄)) → 𝑈𝐶(𝑈 𝑄))
3911, 13, 30, 31, 37, 38lcvpss 37486 . . 3 ((𝜑𝑈𝐶(𝑈 𝑄)) → 𝑈 ⊊ (𝑈 𝑄))
4011lsssssubg 20419 . . . . . . 7 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
4133, 40syl 17 . . . . . 6 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
4241, 16sseldd 3945 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
4341, 34sseldd 3945 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
4412, 42, 43lssnle 19456 . . . 4 (𝜑 → (¬ 𝑄𝑈𝑈 ⊊ (𝑈 𝑄)))
4544adantr 481 . . 3 ((𝜑𝑈𝐶(𝑈 𝑄)) → (¬ 𝑄𝑈𝑈 ⊊ (𝑈 𝑄)))
4639, 45mpbird 256 . 2 ((𝜑𝑈𝐶(𝑈 𝑄)) → ¬ 𝑄𝑈)
4729, 46impbida 799 1 (𝜑 → (¬ 𝑄𝑈𝑈𝐶(𝑈 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cdif 3907  wss 3910  wpss 3911  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  0gc0g 17321  SubGrpcsubg 18922  LSSumclsm 19416  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  LSAtomsclsa 37436  L clcv 37480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lcv 37481
This theorem is referenced by:  lcv2  37504  lsatnle  37506  lsatcvat3  37514
  Copyright terms: Public domain W3C validator