| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcv1 | Structured version Visualization version GIF version | ||
| Description: Covering property of a subspace plus an atom. (chcv1 32327 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcv1.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcv1.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lcv1.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lcv1.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcv1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lcv1.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcv1.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lcv1 | ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcv1.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 2 | lcv1.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | lcv1.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 39030 | . . . . . 6 ⊢ (𝑊 ∈ LVec → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 9 | 1, 8 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
| 11 | lcv1.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 12 | lcv1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 13 | lcv1.c | . . . . . 6 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 14 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑊 ∈ LVec) |
| 16 | lcv1.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
| 18 | 17 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈 ∈ 𝑆) |
| 19 | eldifi 4076 | . . . . . . 7 ⊢ (𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) → 𝑥 ∈ (Base‘𝑊)) | |
| 20 | 19 | 3ad2ant2 1134 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑥 ∈ (Base‘𝑊)) |
| 21 | simp1r 1199 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ 𝑄 ⊆ 𝑈) | |
| 22 | simp3 1138 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑄 = ((LSpan‘𝑊)‘{𝑥})) | |
| 23 | 22 | sseq1d 3961 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑄 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) |
| 24 | 21, 23 | mtbid 324 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
| 25 | 3, 11, 4, 12, 13, 15, 18, 20, 24 | lsmcv2 39068 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 ⊕ ((LSpan‘𝑊)‘{𝑥}))) |
| 26 | 22 | oveq2d 7357 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑥}))) |
| 27 | 25, 26 | breqtrrd 5114 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 ⊕ 𝑄)) |
| 28 | 27 | rexlimdv3a 3137 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}) → 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| 29 | 10, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈𝐶(𝑈 ⊕ 𝑄)) |
| 30 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑊 ∈ LVec) |
| 31 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈 ∈ 𝑆) |
| 32 | lveclmod 21035 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 33 | 2, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 34 | 11, 6, 33, 1 | lsatlssel 39036 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 35 | 11, 12 | lsmcl 21012 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 36 | 33, 16, 34, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 38 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈𝐶(𝑈 ⊕ 𝑄)) | |
| 39 | 11, 13, 30, 31, 37, 38 | lcvpss 39063 | . . 3 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
| 40 | 11 | lsssssubg 20886 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 41 | 33, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 42 | 41, 16 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 43 | 41, 34 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 44 | 12, 42, 43 | lssnle 19581 | . . . 4 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ 𝑄))) |
| 45 | 44 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ 𝑄))) |
| 46 | 39, 45 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → ¬ 𝑄 ⊆ 𝑈) |
| 47 | 29, 46 | impbida 800 | 1 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3894 ⊆ wss 3897 ⊊ wpss 3898 {csn 4571 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 0gc0g 17338 SubGrpcsubg 19028 LSSumclsm 19541 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 LVecclvec 21031 LSAtomsclsa 39013 ⋖L clcv 39057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19224 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 df-lsatoms 39015 df-lcv 39058 |
| This theorem is referenced by: lcv2 39081 lsatnle 39083 lsatcvat3 39091 |
| Copyright terms: Public domain | W3C validator |