| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcv1 | Structured version Visualization version GIF version | ||
| Description: Covering property of a subspace plus an atom. (chcv1 32336 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcv1.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcv1.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lcv1.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lcv1.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcv1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lcv1.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcv1.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lcv1 | ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcv1.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 2 | lcv1.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | lcv1.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 39009 | . . . . . 6 ⊢ (𝑊 ∈ LVec → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 9 | 1, 8 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
| 11 | lcv1.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 12 | lcv1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 13 | lcv1.c | . . . . . 6 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 14 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑊 ∈ LVec) |
| 16 | lcv1.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
| 18 | 17 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈 ∈ 𝑆) |
| 19 | eldifi 4106 | . . . . . . 7 ⊢ (𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) → 𝑥 ∈ (Base‘𝑊)) | |
| 20 | 19 | 3ad2ant2 1134 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑥 ∈ (Base‘𝑊)) |
| 21 | simp1r 1199 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ 𝑄 ⊆ 𝑈) | |
| 22 | simp3 1138 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑄 = ((LSpan‘𝑊)‘{𝑥})) | |
| 23 | 22 | sseq1d 3990 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑄 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) |
| 24 | 21, 23 | mtbid 324 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → ¬ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
| 25 | 3, 11, 4, 12, 13, 15, 18, 20, 24 | lsmcv2 39047 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 ⊕ ((LSpan‘𝑊)‘{𝑥}))) |
| 26 | 22 | oveq2d 7421 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑥}))) |
| 27 | 25, 26 | breqtrrd 5147 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑥})) → 𝑈𝐶(𝑈 ⊕ 𝑄)) |
| 28 | 27 | rexlimdv3a 3145 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑥}) → 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| 29 | 10, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈𝐶(𝑈 ⊕ 𝑄)) |
| 30 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑊 ∈ LVec) |
| 31 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈 ∈ 𝑆) |
| 32 | lveclmod 21064 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 33 | 2, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 34 | 11, 6, 33, 1 | lsatlssel 39015 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 35 | 11, 12 | lsmcl 21041 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 36 | 33, 16, 34, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 38 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈𝐶(𝑈 ⊕ 𝑄)) | |
| 39 | 11, 13, 30, 31, 37, 38 | lcvpss 39042 | . . 3 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
| 40 | 11 | lsssssubg 20915 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 41 | 33, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 42 | 41, 16 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 43 | 41, 34 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 44 | 12, 42, 43 | lssnle 19655 | . . . 4 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ 𝑄))) |
| 45 | 44 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ 𝑄))) |
| 46 | 39, 45 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑈𝐶(𝑈 ⊕ 𝑄)) → ¬ 𝑄 ⊆ 𝑈) |
| 47 | 29, 46 | impbida 800 | 1 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∖ cdif 3923 ⊆ wss 3926 ⊊ wpss 3927 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 0gc0g 17453 SubGrpcsubg 19103 LSSumclsm 19615 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 LVecclvec 21060 LSAtomsclsa 38992 ⋖L clcv 39036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lcv 39037 |
| This theorem is referenced by: lcv2 39060 lsatnle 39062 lsatcvat3 39070 |
| Copyright terms: Public domain | W3C validator |