Step | Hyp | Ref
| Expression |
1 | | lcv1.q |
. . . . 5
β’ (π β π β π΄) |
2 | | lcv1.w |
. . . . . 6
β’ (π β π β LVec) |
3 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2732 |
. . . . . . 7
β’
(LSpanβπ) =
(LSpanβπ) |
5 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
6 | | lcv1.a |
. . . . . . 7
β’ π΄ = (LSAtomsβπ) |
7 | 3, 4, 5, 6 | islsat 37849 |
. . . . . 6
β’ (π β LVec β (π β π΄ β βπ₯ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π₯}))) |
8 | 2, 7 | syl 17 |
. . . . 5
β’ (π β (π β π΄ β βπ₯ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π₯}))) |
9 | 1, 8 | mpbid 231 |
. . . 4
β’ (π β βπ₯ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π₯})) |
10 | 9 | adantr 481 |
. . 3
β’ ((π β§ Β¬ π β π) β βπ₯ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π₯})) |
11 | | lcv1.s |
. . . . . 6
β’ π = (LSubSpβπ) |
12 | | lcv1.p |
. . . . . 6
β’ β =
(LSSumβπ) |
13 | | lcv1.c |
. . . . . 6
β’ πΆ = ( βL
βπ) |
14 | 2 | adantr 481 |
. . . . . . 7
β’ ((π β§ Β¬ π β π) β π β LVec) |
15 | 14 | 3ad2ant1 1133 |
. . . . . 6
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β π β LVec) |
16 | | lcv1.u |
. . . . . . . 8
β’ (π β π β π) |
17 | 16 | adantr 481 |
. . . . . . 7
β’ ((π β§ Β¬ π β π) β π β π) |
18 | 17 | 3ad2ant1 1133 |
. . . . . 6
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β π β π) |
19 | | eldifi 4125 |
. . . . . . 7
β’ (π₯ β ((Baseβπ) β
{(0gβπ)})
β π₯ β
(Baseβπ)) |
20 | 19 | 3ad2ant2 1134 |
. . . . . 6
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β π₯ β (Baseβπ)) |
21 | | simp1r 1198 |
. . . . . . 7
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β Β¬ π β π) |
22 | | simp3 1138 |
. . . . . . . 8
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β π = ((LSpanβπ)β{π₯})) |
23 | 22 | sseq1d 4012 |
. . . . . . 7
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β (π β π β ((LSpanβπ)β{π₯}) β π)) |
24 | 21, 23 | mtbid 323 |
. . . . . 6
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β Β¬ ((LSpanβπ)β{π₯}) β π) |
25 | 3, 11, 4, 12, 13, 15, 18, 20, 24 | lsmcv2 37887 |
. . . . 5
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β ππΆ(π β ((LSpanβπ)β{π₯}))) |
26 | 22 | oveq2d 7421 |
. . . . 5
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β (π β π) = (π β ((LSpanβπ)β{π₯}))) |
27 | 25, 26 | breqtrrd 5175 |
. . . 4
β’ (((π β§ Β¬ π β π) β§ π₯ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π₯})) β ππΆ(π β π)) |
28 | 27 | rexlimdv3a 3159 |
. . 3
β’ ((π β§ Β¬ π β π) β (βπ₯ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π₯}) β ππΆ(π β π))) |
29 | 10, 28 | mpd 15 |
. 2
β’ ((π β§ Β¬ π β π) β ππΆ(π β π)) |
30 | 2 | adantr 481 |
. . . 4
β’ ((π β§ ππΆ(π β π)) β π β LVec) |
31 | 16 | adantr 481 |
. . . 4
β’ ((π β§ ππΆ(π β π)) β π β π) |
32 | | lveclmod 20709 |
. . . . . . 7
β’ (π β LVec β π β LMod) |
33 | 2, 32 | syl 17 |
. . . . . 6
β’ (π β π β LMod) |
34 | 11, 6, 33, 1 | lsatlssel 37855 |
. . . . . 6
β’ (π β π β π) |
35 | 11, 12 | lsmcl 20686 |
. . . . . 6
β’ ((π β LMod β§ π β π β§ π β π) β (π β π) β π) |
36 | 33, 16, 34, 35 | syl3anc 1371 |
. . . . 5
β’ (π β (π β π) β π) |
37 | 36 | adantr 481 |
. . . 4
β’ ((π β§ ππΆ(π β π)) β (π β π) β π) |
38 | | simpr 485 |
. . . 4
β’ ((π β§ ππΆ(π β π)) β ππΆ(π β π)) |
39 | 11, 13, 30, 31, 37, 38 | lcvpss 37882 |
. . 3
β’ ((π β§ ππΆ(π β π)) β π β (π β π)) |
40 | 11 | lsssssubg 20561 |
. . . . . . 7
β’ (π β LMod β π β (SubGrpβπ)) |
41 | 33, 40 | syl 17 |
. . . . . 6
β’ (π β π β (SubGrpβπ)) |
42 | 41, 16 | sseldd 3982 |
. . . . 5
β’ (π β π β (SubGrpβπ)) |
43 | 41, 34 | sseldd 3982 |
. . . . 5
β’ (π β π β (SubGrpβπ)) |
44 | 12, 42, 43 | lssnle 19536 |
. . . 4
β’ (π β (Β¬ π β π β π β (π β π))) |
45 | 44 | adantr 481 |
. . 3
β’ ((π β§ ππΆ(π β π)) β (Β¬ π β π β π β (π β π))) |
46 | 39, 45 | mpbird 256 |
. 2
β’ ((π β§ ππΆ(π β π)) β Β¬ π β π) |
47 | 29, 46 | impbida 799 |
1
β’ (π β (Β¬ π β π β ππΆ(π β π))) |