Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑘( ·𝑠
‘𝑊)𝑥) = (𝑘( ·𝑠
‘𝑊) 0
)) |
2 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑥 = 0 → {𝑥} = { 0 }) |
3 | 2 | difeq2d 4053 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐹 ∖ {𝑥}) = (𝐹 ∖ { 0 })) |
4 | 3 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 = 0 → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
5 | 1, 4 | eleq12d 2833 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑘(
·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))) |
6 | 5 | notbid 317 |
. . . 4
⊢ (𝑥 = 0 → (¬ (𝑘(
·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))) |
7 | 6 | ralbidv 3120 |
. . 3
⊢ (𝑥 = 0 → (∀𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))) |
8 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑊) =
(Base‘𝑊) |
9 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
10 | | eqid 2738 |
. . . . . 6
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
12 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
13 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
14 | 8, 9, 10, 11, 12, 13 | islinds2 20930 |
. . . . 5
⊢ (𝑊 ∈ LVec → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))) |
15 | 14 | simplbda 499 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
16 | 15 | adantr 480 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
17 | | simpr 484 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → 0 ∈ 𝐹) |
18 | 7, 16, 17 | rspcdva 3554 |
. 2
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
19 | | lveclmod 20283 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
21 | 11, 12, 20 | lmod1cl 20065 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ (𝑊 ∈ LVec →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
24 | 11 | lvecdrng 20282 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec →
(Scalar‘𝑊) ∈
DivRing) |
25 | 13, 20 | drngunz 19921 |
. . . . . . . 8
⊢
((Scalar‘𝑊)
∈ DivRing → (1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝑊 ∈ LVec →
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) |
27 | 26 | adantr 480 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) →
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) |
28 | | eldifsn 4717 |
. . . . . 6
⊢
((1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ↔
((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊)))) |
29 | 23, 27, 28 | sylanbrc 582 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) →
(1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
30 | 29 | adantr 480 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) →
(1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
31 | 19 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → 𝑊 ∈ LMod) |
32 | | 0nellinds.1 |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
33 | 11, 9, 12, 32 | lmodvs0 20072 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0 ) = 0
) |
34 | 31, 21, 33 | syl2anc2 584 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0 ) = 0
) |
35 | 8 | linds1 20927 |
. . . . . . . 8
⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊)) |
36 | 35 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → 𝐹 ⊆ (Base‘𝑊)) |
37 | 36 | ssdifssd 4073 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → (𝐹 ∖ { 0 }) ⊆
(Base‘𝑊)) |
38 | 32, 8, 10 | 0ellsp 31467 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐹 ∖ { 0 }) ⊆
(Base‘𝑊)) →
0 ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
39 | 31, 37, 38 | syl2anc 583 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → 0 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
40 | 34, 39 | eqeltrd 2839 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) →
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
41 | | oveq1 7262 |
. . . . . 6
⊢ (𝑘 =
(1r‘(Scalar‘𝑊)) → (𝑘( ·𝑠
‘𝑊) 0 ) =
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0
)) |
42 | 41 | eleq1d 2823 |
. . . . 5
⊢ (𝑘 =
(1r‘(Scalar‘𝑊)) → ((𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })) ↔
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))) |
43 | 42 | rspcev 3552 |
. . . 4
⊢
(((1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) → ∃𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
44 | 30, 40, 43 | syl2anc 583 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → ∃𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
45 | | dfrex2 3166 |
. . 3
⊢
(∃𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 })) ↔ ¬
∀𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
46 | 44, 45 | sylib 217 |
. 2
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0 ∈ 𝐹) → ¬ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊) 0 ) ∈
((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) |
47 | 18, 46 | pm2.65da 813 |
1
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0 ∈ 𝐹) |