Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nellinds Structured version   Visualization version   GIF version

Theorem 0nellinds 33377
Description: The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023.)
Hypothesis
Ref Expression
0nellinds.1 0 = (0g𝑊)
Assertion
Ref Expression
0nellinds ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0𝐹)

Proof of Theorem 0nellinds
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . . . 6 (𝑥 = 0 → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊) 0 ))
2 sneq 4640 . . . . . . . 8 (𝑥 = 0 → {𝑥} = { 0 })
32difeq2d 4135 . . . . . . 7 (𝑥 = 0 → (𝐹 ∖ {𝑥}) = (𝐹 ∖ { 0 }))
43fveq2d 6910 . . . . . 6 (𝑥 = 0 → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
51, 4eleq12d 2832 . . . . 5 (𝑥 = 0 → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))))
65notbid 318 . . . 4 (𝑥 = 0 → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))))
76ralbidv 3175 . . 3 (𝑥 = 0 → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))))
8 eqid 2734 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2734 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2734 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
11 eqid 2734 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
12 eqid 2734 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
13 eqid 2734 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
148, 9, 10, 11, 12, 13islinds2 21850 . . . . 5 (𝑊 ∈ LVec → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))))
1514simplbda 499 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
1615adantr 480 . . 3 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
17 simpr 484 . . 3 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → 0𝐹)
187, 16, 17rspcdva 3622 . 2 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
19 lveclmod 21122 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
20 eqid 2734 . . . . . . . . 9 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
2111, 12, 20lmod1cl 20903 . . . . . . . 8 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2219, 21syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2322adantr 480 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2411lvecdrng 21121 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2513, 20drngunz 20763 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2624, 25syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2726adantr 480 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
28 eldifsn 4790 . . . . . 6 ((1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
2923, 27, 28sylanbrc 583 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → (1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
3029adantr 480 . . . 4 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → (1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
3119ad2antrr 726 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → 𝑊 ∈ LMod)
32 0nellinds.1 . . . . . . 7 0 = (0g𝑊)
3311, 9, 12, 32lmodvs0 20910 . . . . . 6 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ) = 0 )
3431, 21, 33syl2anc2 585 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ) = 0 )
358linds1 21847 . . . . . . . 8 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
3635ad2antlr 727 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → 𝐹 ⊆ (Base‘𝑊))
3736ssdifssd 4156 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → (𝐹 ∖ { 0 }) ⊆ (Base‘𝑊))
3832, 8, 100ellsp 33376 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐹 ∖ { 0 }) ⊆ (Base‘𝑊)) → 0 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
3931, 37, 38syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → 0 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
4034, 39eqeltrd 2838 . . . 4 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
41 oveq1 7437 . . . . . 6 (𝑘 = (1r‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝑊) 0 ) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ))
4241eleq1d 2823 . . . . 5 (𝑘 = (1r‘(Scalar‘𝑊)) → ((𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })) ↔ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))))
4342rspcev 3621 . . . 4 (((1r‘(Scalar‘𝑊)) ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 }))) → ∃𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
4430, 40, 43syl2anc 584 . . 3 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ∃𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
45 dfrex2 3070 . . 3 (∃𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})(𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })) ↔ ¬ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
4644, 45sylib 218 . 2 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 0𝐹) → ¬ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊) 0 ) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ { 0 })))
4718, 46pm2.65da 817 1 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cdif 3959  wss 3962  {csn 4630  cfv 6562  (class class class)co 7430  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  1rcur 20198  DivRingcdr 20745  LModclmod 20874  LSpanclspn 20986  LVecclvec 21118  LIndSclinds 21842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-drng 20747  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lvec 21119  df-lindf 21843  df-linds 21844
This theorem is referenced by:  linds2eq  33388  lvecdim0  33633  lindsunlem  33651  fedgmul  33658  extdg1id  33690
  Copyright terms: Public domain W3C validator