MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcl Structured version   Visualization version   GIF version

Theorem lmcl 22519
Description: Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmcl ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)

Proof of Theorem lmcl
Dummy variables 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
21lmbr 22480 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
32biimpa 477 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
43simp2d 1142 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105  wral 3062  wrex 3071   class class class wbr 5085  ran crn 5606  cres 5607  wf 6459  cfv 6463  (class class class)co 7313  pm cpm 8662  cc 10939  cuz 12652  TopOnctopon 22130  𝑡clm 22448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-top 22114  df-topon 22131  df-lm 22451
This theorem is referenced by:  lmss  22520  lmff  22523  lmcls  22524  lmcn  22527  lmmo  22602  1stccn  22685  1stckgenlem  22775  1stckgen  22776  cmetcaulem  24523  iscmet3lem2  24527  nglmle  24537  minvecolem4b  29348  minvecolem4  29350  axhcompl-zf  29468  heiborlem9  36037  bfplem2  36041  climreeq  43398  xlimcl  43607
  Copyright terms: Public domain W3C validator