| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcl | Structured version Visualization version GIF version | ||
| Description: Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | 1 | lmbr 23173 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢))) |
| 4 | 3 | simp2d 1143 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ran crn 5615 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11004 ℤ≥cuz 12732 TopOnctopon 22825 ⇝𝑡clm 23141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-top 22809 df-topon 22826 df-lm 23144 |
| This theorem is referenced by: lmss 23213 lmff 23216 lmcls 23217 lmcn 23220 lmmo 23295 1stccn 23378 1stckgenlem 23468 1stckgen 23469 cmetcaulem 25215 iscmet3lem2 25219 nglmle 25229 minvecolem4b 30858 minvecolem4 30860 axhcompl-zf 30978 heiborlem9 37867 bfplem2 37871 climreeq 45661 xlimcl 45868 |
| Copyright terms: Public domain | W3C validator |