| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcl | Structured version Visualization version GIF version | ||
| Description: Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | 1 | lmbr 23121 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢))) |
| 4 | 3 | simp2d 1143 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ran crn 5632 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑pm cpm 8777 ℂcc 11042 ℤ≥cuz 12769 TopOnctopon 22773 ⇝𝑡clm 23089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-top 22757 df-topon 22774 df-lm 23092 |
| This theorem is referenced by: lmss 23161 lmff 23164 lmcls 23165 lmcn 23168 lmmo 23243 1stccn 23326 1stckgenlem 23416 1stckgen 23417 cmetcaulem 25164 iscmet3lem2 25168 nglmle 25178 minvecolem4b 30780 minvecolem4 30782 axhcompl-zf 30900 heiborlem9 37786 bfplem2 37790 climreeq 45584 xlimcl 45793 |
| Copyright terms: Public domain | W3C validator |