| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmicsym | Structured version Visualization version GIF version | ||
| Description: Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmicsym | ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ≃𝑚 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic 21067 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
| 2 | n0 4353 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) | |
| 3 | lmimcnv 21066 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → ◡𝑓 ∈ (𝑆 LMIso 𝑅)) | |
| 4 | brlmici 21068 | . . . . 5 ⊢ (◡𝑓 ∈ (𝑆 LMIso 𝑅) → 𝑆 ≃𝑚 𝑅) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ≃𝑚 𝑅) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ≃𝑚 𝑅) |
| 7 | 2, 6 | sylbi 217 | . 2 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ → 𝑆 ≃𝑚 𝑅) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ≃𝑚 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 class class class wbr 5143 ◡ccnv 5684 (class class class)co 7431 LMIso clmim 21019 ≃𝑚 clmic 21020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-1o 8506 df-map 8868 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-ghm 19231 df-lmod 20860 df-lmhm 21021 df-lmim 21022 df-lmic 21023 |
| This theorem is referenced by: lmisfree 21862 |
| Copyright terms: Public domain | W3C validator |