MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmicsym Structured version   Visualization version   GIF version

Theorem lmicsym 21008
Description: Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
lmicsym (𝑅𝑚 𝑆𝑆𝑚 𝑅)

Proof of Theorem lmicsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 21004 . 2 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4302 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
3 lmimcnv 21003 . . . . 5 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑆 LMIso 𝑅))
4 brlmici 21005 . . . . 5 (𝑓 ∈ (𝑆 LMIso 𝑅) → 𝑆𝑚 𝑅)
53, 4syl 17 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆𝑚 𝑅)
65exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆𝑚 𝑅)
72, 6sylbi 217 . 2 ((𝑅 LMIso 𝑆) ≠ ∅ → 𝑆𝑚 𝑅)
81, 7sylbi 217 1 (𝑅𝑚 𝑆𝑆𝑚 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  ccnv 5618  (class class class)co 7352   LMIso clmim 20956  𝑚 clmic 20957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-ghm 19127  df-lmod 20797  df-lmhm 20958  df-lmim 20959  df-lmic 20960
This theorem is referenced by:  lmisfree  21781
  Copyright terms: Public domain W3C validator