| Step | Hyp | Ref
| Expression |
| 1 | | ellnfn 31849 |
. . . . . 6
⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 2 | 1 | simprbi 496 |
. . . . 5
⊢ (𝑇 ∈ LinFn →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧))) |
| 3 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) |
| 4 | 3 | fvoveq1d 7436 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧))) |
| 5 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 · (𝑇‘𝑦)) = (𝐴 · (𝑇‘𝑦))) |
| 6 | 5 | oveq1d 7429 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)) = ((𝐴 · (𝑇‘𝑦)) + (𝑇‘𝑧))) |
| 7 | 4, 6 | eqeq12d 2750 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) |
| 8 | | oveq2 7422 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) |
| 9 | 8 | fvoveq1d 7436 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧))) |
| 10 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) |
| 11 | 10 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 · (𝑇‘𝑦)) = (𝐴 · (𝑇‘𝐵))) |
| 12 | 11 | oveq1d 7429 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 · (𝑇‘𝑦)) + (𝑇‘𝑧)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝑧))) |
| 13 | 9, 12 | eqeq12d 2750 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 · (𝑇‘𝑦)) + (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝑧)))) |
| 14 | | oveq2 7422 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → ((𝐴 ·ℎ 𝐵) +ℎ 𝑧) = ((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) |
| 15 | 14 | fveq2d 6891 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶))) |
| 16 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝑇‘𝑧) = (𝑇‘𝐶)) |
| 17 | 16 | oveq2d 7430 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝑧)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) |
| 18 | 15, 17 | eqeq12d 2750 |
. . . . . 6
⊢ (𝑧 = 𝐶 → ((𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶)))) |
| 19 | 7, 13, 18 | rspc3v 3622 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) →
(∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶)))) |
| 20 | 2, 19 | syl5 34 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinFn → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶)))) |
| 21 | 20 | 3expb 1120 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinFn → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶)))) |
| 22 | 21 | impcom 407 |
. 2
⊢ ((𝑇 ∈ LinFn ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) |
| 23 | 22 | anassrs 467 |
1
⊢ (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) |