HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopadj2 Structured version   Visualization version   GIF version

Theorem unopadj2 31948
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopadj2 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)

Proof of Theorem unopadj2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 31930 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 31869 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 cnvunop 31928 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
5 unoplin 31930 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
6 lnopf 31869 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
74, 5, 63syl 18 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
8 unopadj 31929 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
983expib 1120 . . 3 (𝑇 ∈ UniOp → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))))
109ralrimivv 3196 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
11 adjeq 31945 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))) → (adj𝑇) = 𝑇)
123, 7, 10, 11syl3anc 1369 1 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  wcel 2104  wral 3057  ccnv 5682  wf 6554  cfv 6558  (class class class)co 7425  chba 30929   ·ih csp 30932  LinOpclo 30957  UniOpcuo 30959  adjcado 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-hilex 31009  ax-hfvadd 31010  ax-hvcom 31011  ax-hvass 31012  ax-hv0cl 31013  ax-hvaddid 31014  ax-hfvmul 31015  ax-hvmulid 31016  ax-hvdistr2 31019  ax-hvmul0 31020  ax-hfi 31089  ax-his1 31092  ax-his2 31093  ax-his3 31094  ax-his4 31095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-er 8738  df-map 8861  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-div 11912  df-2 12320  df-cj 15124  df-re 15125  df-im 15126  df-hvsub 30981  df-lnop 31851  df-unop 31853  df-adjh 31859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator