HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopadj2 Structured version   Visualization version   GIF version

Theorem unopadj2 29352
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopadj2 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)

Proof of Theorem unopadj2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 29334 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 29273 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 cnvunop 29332 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
5 unoplin 29334 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
6 lnopf 29273 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
74, 5, 63syl 18 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
8 unopadj 29333 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
983expib 1158 . . 3 (𝑇 ∈ UniOp → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))))
109ralrimivv 3179 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
11 adjeq 29349 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))) → (adj𝑇) = 𝑇)
123, 7, 10, 11syl3anc 1496 1 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wral 3117  ccnv 5341  wf 6119  cfv 6123  (class class class)co 6905  chba 28331   ·ih csp 28334  LinOpclo 28359  UniOpcuo 28361  adjcado 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-hilex 28411  ax-hfvadd 28412  ax-hvcom 28413  ax-hvass 28414  ax-hv0cl 28415  ax-hvaddid 28416  ax-hfvmul 28417  ax-hvmulid 28418  ax-hvdistr2 28421  ax-hvmul0 28422  ax-hfi 28491  ax-his1 28494  ax-his2 28495  ax-his3 28496  ax-his4 28497
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-2 11414  df-cj 14216  df-re 14217  df-im 14218  df-hvsub 28383  df-lnop 29255  df-unop 29257  df-adjh 29263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator