HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopadj2 Structured version   Visualization version   GIF version

Theorem unopadj2 29710
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopadj2 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)

Proof of Theorem unopadj2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 29692 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 29631 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 cnvunop 29690 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
5 unoplin 29692 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
6 lnopf 29631 . . 3 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
74, 5, 63syl 18 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
8 unopadj 29691 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
983expib 1119 . . 3 (𝑇 ∈ UniOp → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))))
109ralrimivv 3184 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦)))
11 adjeq 29707 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑇𝑦))) → (adj𝑇) = 𝑇)
123, 7, 10, 11syl3anc 1368 1 (𝑇 ∈ UniOp → (adj𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  wral 3132  ccnv 5535  wf 6332  cfv 6336  (class class class)co 7138  chba 28691   ·ih csp 28694  LinOpclo 28719  UniOpcuo 28721  adjcado 28727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-hilex 28771  ax-hfvadd 28772  ax-hvcom 28773  ax-hvass 28774  ax-hv0cl 28775  ax-hvaddid 28776  ax-hfvmul 28777  ax-hvmulid 28778  ax-hvdistr2 28781  ax-hvmul0 28782  ax-hfi 28851  ax-his1 28854  ax-his2 28855  ax-his3 28856  ax-his4 28857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-2 11686  df-cj 14447  df-re 14448  df-im 14449  df-hvsub 28743  df-lnop 29613  df-unop 29615  df-adjh 29621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator