Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopun Structured version   Visualization version   GIF version

Theorem nmopun 29803
 Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopun (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)

Proof of Theorem nmopun
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 29709 . . . . 5 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 29648 . . . . 5 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 nmopval 29645 . . . 4 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
53, 4syl 17 . . 3 (𝑇 ∈ UniOp → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
65adantl 485 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
7 nmopsetretHIL 29653 . . . . . . 7 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
8 ressxr 10683 . . . . . . 7 ℝ ⊆ ℝ*
97, 8sstrdi 3965 . . . . . 6 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
103, 9syl 17 . . . . 5 (𝑇 ∈ UniOp → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
1110adantl 485 . . . 4 (( ℋ ≠ 0𝑇 ∈ UniOp) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
12 1xr 10698 . . . 4 1 ∈ ℝ*
1311, 12jctir 524 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*))
14 vex 3483 . . . . . . 7 𝑧 ∈ V
15 eqeq1 2828 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm‘(𝑇𝑦))))
1615anbi2d 631 . . . . . . . 8 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1716rexbidv 3289 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1814, 17elab 3653 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))))
19 unopnorm 29706 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑦)) = (norm𝑦))
2019eqeq2d 2835 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑧 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm𝑦)))
2120anbi2d 631 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦))))
22 breq1 5055 . . . . . . . . . 10 (𝑧 = (norm𝑦) → (𝑧 ≤ 1 ↔ (norm𝑦) ≤ 1))
2322biimparc 483 . . . . . . . . 9 (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦)) → 𝑧 ≤ 1)
2421, 23syl6bi 256 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2524rexlimdva 3276 . . . . . . 7 (𝑇 ∈ UniOp → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2625imp 410 . . . . . 6 ((𝑇 ∈ UniOp ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))) → 𝑧 ≤ 1)
2718, 26sylan2b 596 . . . . 5 ((𝑇 ∈ UniOp ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → 𝑧 ≤ 1)
2827ralrimiva 3177 . . . 4 (𝑇 ∈ UniOp → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
2928adantl 485 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
30 hne0 29336 . . . . . . . . . . 11 ( ℋ ≠ 0 ↔ ∃𝑦 ∈ ℋ 𝑦 ≠ 0)
31 norm1hex 29040 . . . . . . . . . . 11 (∃𝑦 ∈ ℋ 𝑦 ≠ 0 ↔ ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3230, 31sylbb 222 . . . . . . . . . 10 ( ℋ ≠ 0 → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3332adantr 484 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
34 1le1 11266 . . . . . . . . . . . . . 14 1 ≤ 1
35 breq1 5055 . . . . . . . . . . . . . 14 ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ↔ 1 ≤ 1))
3634, 35mpbiri 261 . . . . . . . . . . . . 13 ((norm𝑦) = 1 → (norm𝑦) ≤ 1)
3736a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → (norm𝑦) ≤ 1))
3819adantr 484 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = (norm𝑦))
39 eqeq2 2836 . . . . . . . . . . . . . . . 16 ((norm𝑦) = 1 → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4039adantl 485 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4138, 40mpbid 235 . . . . . . . . . . . . . 14 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = 1)
4241eqcomd 2830 . . . . . . . . . . . . 13 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → 1 = (norm‘(𝑇𝑦)))
4342ex 416 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → 1 = (norm‘(𝑇𝑦))))
4437, 43jcad 516 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4544adantll 713 . . . . . . . . . 10 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4645reximdva 3266 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → (∃𝑦 ∈ ℋ (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4733, 46mpd 15 . . . . . . . 8 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
48 1ex 10635 . . . . . . . . 9 1 ∈ V
49 eqeq1 2828 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 1 = (norm‘(𝑇𝑦))))
5049anbi2d 631 . . . . . . . . . 10 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5150rexbidv 3289 . . . . . . . . 9 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5248, 51elab 3653 . . . . . . . 8 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
5347, 52sylibr 237 . . . . . . 7 (( ℋ ≠ 0𝑇 ∈ UniOp) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
5453adantr 484 . . . . . 6 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
55 breq2 5056 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5655rspcev 3609 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5754, 56sylan 583 . . . . 5 (((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5857ex 416 . . . 4 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
5958ralrimiva 3177 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
60 supxr2 12704 . . 3 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
6113, 29, 59, 60syl12anc 835 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
626, 61eqtrd 2859 1 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {cab 2802   ≠ wne 3014  ∀wral 3133  ∃wrex 3134   ⊆ wss 3919   class class class wbr 5052  ⟶wf 6339  ‘cfv 6343  supcsup 8901  ℝcr 10534  1c1 10536  ℝ*cxr 10672   < clt 10673   ≤ cle 10674   ℋchba 28708  normℎcno 28712  0ℎc0v 28713  0ℋc0h 28724  normopcnop 28734  LinOpclo 28736  UniOpcuo 28738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-hilex 28788  ax-hfvadd 28789  ax-hvcom 28790  ax-hvass 28791  ax-hv0cl 28792  ax-hvaddid 28793  ax-hfvmul 28794  ax-hvmulid 28795  ax-hvmulass 28796  ax-hvdistr1 28797  ax-hvdistr2 28798  ax-hvmul0 28799  ax-hfi 28868  ax-his1 28871  ax-his2 28872  ax-his3 28873  ax-his4 28874 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-grpo 28282  df-gid 28283  df-ablo 28334  df-vc 28348  df-nv 28381  df-va 28384  df-ba 28385  df-sm 28386  df-0v 28387  df-nmcv 28389  df-hnorm 28757  df-hba 28758  df-hvsub 28760  df-hlim 28761  df-sh 28996  df-ch 29010  df-ch0 29042  df-nmop 29628  df-lnop 29630  df-unop 29632 This theorem is referenced by:  unopbd  29804  unierri  29893
 Copyright terms: Public domain W3C validator