Step | Hyp | Ref
| Expression |
1 | | unoplin 30282 |
. . . . 5
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) |
2 | | lnopf 30221 |
. . . . 5
⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶
ℋ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶
ℋ) |
4 | | nmopval 30218 |
. . . 4
⊢ (𝑇: ℋ⟶ ℋ →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝑇 ∈ UniOp →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
6 | 5 | adantl 482 |
. 2
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) →
(normop‘𝑇)
= sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, <
)) |
7 | | nmopsetretHIL 30226 |
. . . . . . 7
⊢ (𝑇: ℋ⟶ ℋ →
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
8 | | ressxr 11019 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
9 | 7, 8 | sstrdi 3933 |
. . . . . 6
⊢ (𝑇: ℋ⟶ ℋ →
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
10 | 3, 9 | syl 17 |
. . . . 5
⊢ (𝑇 ∈ UniOp → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
11 | 10 | adantl 482 |
. . . 4
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆
ℝ*) |
12 | | 1xr 11034 |
. . . 4
⊢ 1 ∈
ℝ* |
13 | 11, 12 | jctir 521 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ 1
∈ ℝ*)) |
14 | | vex 3436 |
. . . . . . 7
⊢ 𝑧 ∈ V |
15 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ 𝑧 = (normℎ‘(𝑇‘𝑦)))) |
16 | 15 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3609 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦)))) |
19 | | unopnorm 30279 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
20 | 19 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑧 =
(normℎ‘(𝑇‘𝑦)) ↔ 𝑧 = (normℎ‘𝑦))) |
21 | 20 | anbi2d 629 |
. . . . . . . . 9
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘𝑦)))) |
22 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑧 =
(normℎ‘𝑦) → (𝑧 ≤ 1 ↔
(normℎ‘𝑦) ≤ 1)) |
23 | 22 | biimparc 480 |
. . . . . . . . 9
⊢
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘𝑦)) → 𝑧 ≤ 1) |
24 | 21, 23 | syl6bi 252 |
. . . . . . . 8
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) → 𝑧 ≤ 1)) |
25 | 24 | rexlimdva 3213 |
. . . . . . 7
⊢ (𝑇 ∈ UniOp →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦))) → 𝑧 ≤ 1)) |
26 | 25 | imp 407 |
. . . . . 6
⊢ ((𝑇 ∈ UniOp ∧ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (normℎ‘(𝑇‘𝑦)))) → 𝑧 ≤ 1) |
27 | 18, 26 | sylan2b 594 |
. . . . 5
⊢ ((𝑇 ∈ UniOp ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) → 𝑧 ≤ 1) |
28 | 27 | ralrimiva 3103 |
. . . 4
⊢ (𝑇 ∈ UniOp →
∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1) |
29 | 28 | adantl 482 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1) |
30 | | hne0 29909 |
. . . . . . . . . . 11
⊢ ( ℋ
≠ 0ℋ ↔ ∃𝑦 ∈ ℋ 𝑦 ≠ 0ℎ) |
31 | | norm1hex 29613 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
ℋ 𝑦 ≠
0ℎ ↔ ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
32 | 30, 31 | sylbb 218 |
. . . . . . . . . 10
⊢ ( ℋ
≠ 0ℋ → ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1) |
34 | | 1le1 11603 |
. . . . . . . . . . . . . 14
⊢ 1 ≤
1 |
35 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ↔ 1 ≤ 1)) |
36 | 34, 35 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢
((normℎ‘𝑦) = 1 →
(normℎ‘𝑦) ≤ 1) |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
(normℎ‘𝑦) ≤ 1)) |
38 | 19 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
39 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢
((normℎ‘𝑦) = 1 →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) ↔
(normℎ‘(𝑇‘𝑦)) = 1)) |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) ↔
(normℎ‘(𝑇‘𝑦)) = 1)) |
41 | 38, 40 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) →
(normℎ‘(𝑇‘𝑦)) = 1) |
42 | 41 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) = 1) → 1 =
(normℎ‘(𝑇‘𝑦))) |
43 | 42 | ex 413 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 → 1 =
(normℎ‘(𝑇‘𝑦)))) |
44 | 37, 43 | jcad 513 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
45 | 44 | adantll 711 |
. . . . . . . . . 10
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝑦) = 1 →
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
46 | 45 | reximdva 3203 |
. . . . . . . . 9
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (∃𝑦 ∈ ℋ
(normℎ‘𝑦) = 1 → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
47 | 33, 46 | mpd 15 |
. . . . . . . 8
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦)))) |
48 | | 1ex 10971 |
. . . . . . . . 9
⊢ 1 ∈
V |
49 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ 1 =
(normℎ‘(𝑇‘𝑦)))) |
50 | 49 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑥 = 1 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
51 | 50 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦))))) |
52 | 48, 51 | elab 3609 |
. . . . . . . 8
⊢ (1 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 1 =
(normℎ‘(𝑇‘𝑦)))) |
53 | 47, 52 | sylibr 233 |
. . . . . . 7
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
54 | 53 | adantr 481 |
. . . . . 6
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
55 | | breq2 5078 |
. . . . . . 7
⊢ (𝑤 = 1 → (𝑧 < 𝑤 ↔ 𝑧 < 1)) |
56 | 55 | rspcev 3561 |
. . . . . 6
⊢ ((1
∈ {𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤) |
57 | 54, 56 | sylan 580 |
. . . . 5
⊢ ((((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤) |
58 | 57 | ex 413 |
. . . 4
⊢ (((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤)) |
59 | 58 | ralrimiva 3103 |
. . 3
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤)) |
60 | | supxr2 13048 |
. . 3
⊢ ((({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ 1
∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) =
1) |
61 | 13, 29, 59, 60 | syl12anc 834 |
. 2
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) =
1) |
62 | 6, 61 | eqtrd 2778 |
1
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) →
(normop‘𝑇)
= 1) |