HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopun Structured version   Visualization version   GIF version

Theorem nmopun 32043
Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopun (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)

Proof of Theorem nmopun
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 31949 . . . . 5 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 lnopf 31888 . . . . 5 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 nmopval 31885 . . . 4 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
53, 4syl 17 . . 3 (𝑇 ∈ UniOp → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
65adantl 481 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
7 nmopsetretHIL 31893 . . . . . . 7 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
8 ressxr 11303 . . . . . . 7 ℝ ⊆ ℝ*
97, 8sstrdi 4008 . . . . . 6 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
103, 9syl 17 . . . . 5 (𝑇 ∈ UniOp → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
1110adantl 481 . . . 4 (( ℋ ≠ 0𝑇 ∈ UniOp) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
12 1xr 11318 . . . 4 1 ∈ ℝ*
1311, 12jctir 520 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*))
14 vex 3482 . . . . . . 7 𝑧 ∈ V
15 eqeq1 2739 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm‘(𝑇𝑦))))
1615anbi2d 630 . . . . . . . 8 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1716rexbidv 3177 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))))
1814, 17elab 3681 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))))
19 unopnorm 31946 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑦)) = (norm𝑦))
2019eqeq2d 2746 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑧 = (norm‘(𝑇𝑦)) ↔ 𝑧 = (norm𝑦)))
2120anbi2d 630 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦))))
22 breq1 5151 . . . . . . . . . 10 (𝑧 = (norm𝑦) → (𝑧 ≤ 1 ↔ (norm𝑦) ≤ 1))
2322biimparc 479 . . . . . . . . 9 (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm𝑦)) → 𝑧 ≤ 1)
2421, 23biimtrdi 253 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2524rexlimdva 3153 . . . . . . 7 (𝑇 ∈ UniOp → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦))) → 𝑧 ≤ 1))
2625imp 406 . . . . . 6 ((𝑇 ∈ UniOp ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘(𝑇𝑦)))) → 𝑧 ≤ 1)
2718, 26sylan2b 594 . . . . 5 ((𝑇 ∈ UniOp ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → 𝑧 ≤ 1)
2827ralrimiva 3144 . . . 4 (𝑇 ∈ UniOp → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
2928adantl 481 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1)
30 hne0 31576 . . . . . . . . . . 11 ( ℋ ≠ 0 ↔ ∃𝑦 ∈ ℋ 𝑦 ≠ 0)
31 norm1hex 31280 . . . . . . . . . . 11 (∃𝑦 ∈ ℋ 𝑦 ≠ 0 ↔ ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3230, 31sylbb 219 . . . . . . . . . 10 ( ℋ ≠ 0 → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
3332adantr 480 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ (norm𝑦) = 1)
34 1le1 11889 . . . . . . . . . . . . . 14 1 ≤ 1
35 breq1 5151 . . . . . . . . . . . . . 14 ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ↔ 1 ≤ 1))
3634, 35mpbiri 258 . . . . . . . . . . . . 13 ((norm𝑦) = 1 → (norm𝑦) ≤ 1)
3736a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → (norm𝑦) ≤ 1))
3819adantr 480 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = (norm𝑦))
39 eqeq2 2747 . . . . . . . . . . . . . . . 16 ((norm𝑦) = 1 → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4039adantl 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(𝑇𝑦)) = 1))
4138, 40mpbid 232 . . . . . . . . . . . . . 14 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → (norm‘(𝑇𝑦)) = 1)
4241eqcomd 2741 . . . . . . . . . . . . 13 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) = 1) → 1 = (norm‘(𝑇𝑦)))
4342ex 412 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → 1 = (norm‘(𝑇𝑦))))
4437, 43jcad 512 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4544adantll 714 . . . . . . . . . 10 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑦 ∈ ℋ) → ((norm𝑦) = 1 → ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4645reximdva 3166 . . . . . . . . 9 (( ℋ ≠ 0𝑇 ∈ UniOp) → (∃𝑦 ∈ ℋ (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
4733, 46mpd 15 . . . . . . . 8 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
48 1ex 11255 . . . . . . . . 9 1 ∈ V
49 eqeq1 2739 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 = (norm‘(𝑇𝑦)) ↔ 1 = (norm‘(𝑇𝑦))))
5049anbi2d 630 . . . . . . . . . 10 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5150rexbidv 3177 . . . . . . . . 9 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦)))))
5248, 51elab 3681 . . . . . . . 8 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘(𝑇𝑦))))
5347, 52sylibr 234 . . . . . . 7 (( ℋ ≠ 0𝑇 ∈ UniOp) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
5453adantr 480 . . . . . 6 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
55 breq2 5152 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5655rspcev 3622 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5754, 56sylan 580 . . . . 5 (((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤)
5857ex 412 . . . 4 ((( ℋ ≠ 0𝑇 ∈ UniOp) ∧ 𝑧 ∈ ℝ) → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
5958ralrimiva 3144 . . 3 (( ℋ ≠ 0𝑇 ∈ UniOp) → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))
60 supxr2 13353 . . 3 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
6113, 29, 59, 60syl12anc 837 . 2 (( ℋ ≠ 0𝑇 ∈ UniOp) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) = 1)
626, 61eqtrd 2775 1 (( ℋ ≠ 0𝑇 ∈ UniOp) → (normop𝑇) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  supcsup 9478  cr 11152  1c1 11154  *cxr 11292   < clt 11293  cle 11294  chba 30948  normcno 30952  0c0v 30953  0c0h 30964  normopcnop 30974  LinOpclo 30976  UniOpcuo 30978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hlim 31001  df-sh 31236  df-ch 31250  df-ch0 31282  df-nmop 31868  df-lnop 31870  df-unop 31872
This theorem is referenced by:  unopbd  32044  unierri  32133
  Copyright terms: Public domain W3C validator