Step | Hyp | Ref
| Expression |
1 | | ellnop 30121 |
. . . . . 6
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
2 | 1 | simprbi 496 |
. . . . 5
⊢ (𝑇 ∈ LinOp →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
3 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) |
4 | 3 | fvoveq1d 7277 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧))) |
5 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ (𝑇‘𝑦)) = (𝐴 ·ℎ (𝑇‘𝑦))) |
6 | 5 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
7 | 4, 6 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
8 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) |
9 | 8 | fvoveq1d 7277 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧))) |
10 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) |
11 | 10 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑦)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
12 | 11 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧))) |
13 | 9, 12 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑇‘((𝐴 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)))) |
14 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → ((𝐴 ·ℎ 𝐵) +ℎ 𝑧) = ((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) |
15 | 14 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶))) |
16 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝑇‘𝑧) = (𝑇‘𝐶)) |
17 | 16 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |
18 | 15, 17 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝐶 → ((𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝑧)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝑧)) ↔ (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
19 | 7, 13, 18 | rspc3v 3565 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) →
(∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
20 | 2, 19 | syl5 34 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
21 | 20 | 3expb 1118 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶)))) |
22 | 21 | impcom 407 |
. 2
⊢ ((𝑇 ∈ LinOp ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |
23 | 22 | anassrs 467 |
1
⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) |