HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopl Structured version   Visualization version   GIF version

Theorem lnopl 29849
Description: Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopl (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))

Proof of Theorem lnopl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellnop 29793 . . . . . 6 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
21simprbi 500 . . . . 5 (𝑇 ∈ LinOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
3 oveq1 7177 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
43fvoveq1d 7192 . . . . . . 7 (𝑥 = 𝐴 → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝑦) + 𝑧)))
5 oveq1 7177 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · (𝑇𝑦)) = (𝐴 · (𝑇𝑦)))
65oveq1d 7185 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)))
74, 6eqeq12d 2754 . . . . . 6 (𝑥 = 𝐴 → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧))))
8 oveq2 7178 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
98fvoveq1d 7192 . . . . . . 7 (𝑦 = 𝐵 → (𝑇‘((𝐴 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝑧)))
10 fveq2 6674 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
1110oveq2d 7186 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · (𝑇𝑦)) = (𝐴 · (𝑇𝐵)))
1211oveq1d 7185 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)))
139, 12eqeq12d 2754 . . . . . 6 (𝑦 = 𝐵 → ((𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧))))
14 oveq2 7178 . . . . . . . 8 (𝑧 = 𝐶 → ((𝐴 · 𝐵) + 𝑧) = ((𝐴 · 𝐵) + 𝐶))
1514fveq2d 6678 . . . . . . 7 (𝑧 = 𝐶 → (𝑇‘((𝐴 · 𝐵) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝐶)))
16 fveq2 6674 . . . . . . . 8 (𝑧 = 𝐶 → (𝑇𝑧) = (𝑇𝐶))
1716oveq2d 7186 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
1815, 17eqeq12d 2754 . . . . . 6 (𝑧 = 𝐶 → ((𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
197, 13, 18rspc3v 3539 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
202, 19syl5 34 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
21203expb 1121 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
2221impcom 411 . 2 ((𝑇 ∈ LinOp ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
2322anassrs 471 1 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  chba 28854   + cva 28855   · csm 28856  LinOpclo 28882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-hilex 28934
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-map 8439  df-lnop 29776
This theorem is referenced by:  lnop0  29901  lnopmul  29902  lnopli  29903
  Copyright terms: Public domain W3C validator