HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopl Structured version   Visualization version   GIF version

Theorem lnopl 31816
Description: Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopl (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))

Proof of Theorem lnopl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellnop 31760 . . . . . 6 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
21simprbi 496 . . . . 5 (𝑇 ∈ LinOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
3 oveq1 7376 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
43fvoveq1d 7391 . . . . . . 7 (𝑥 = 𝐴 → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝑦) + 𝑧)))
5 oveq1 7376 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · (𝑇𝑦)) = (𝐴 · (𝑇𝑦)))
65oveq1d 7384 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)))
74, 6eqeq12d 2745 . . . . . 6 (𝑥 = 𝐴 → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧))))
8 oveq2 7377 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
98fvoveq1d 7391 . . . . . . 7 (𝑦 = 𝐵 → (𝑇‘((𝐴 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝑧)))
10 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
1110oveq2d 7385 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · (𝑇𝑦)) = (𝐴 · (𝑇𝐵)))
1211oveq1d 7384 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)))
139, 12eqeq12d 2745 . . . . . 6 (𝑦 = 𝐵 → ((𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧))))
14 oveq2 7377 . . . . . . . 8 (𝑧 = 𝐶 → ((𝐴 · 𝐵) + 𝑧) = ((𝐴 · 𝐵) + 𝐶))
1514fveq2d 6844 . . . . . . 7 (𝑧 = 𝐶 → (𝑇‘((𝐴 · 𝐵) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝐶)))
16 fveq2 6840 . . . . . . . 8 (𝑧 = 𝐶 → (𝑇𝑧) = (𝑇𝐶))
1716oveq2d 7385 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
1815, 17eqeq12d 2745 . . . . . 6 (𝑧 = 𝐶 → ((𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
197, 13, 18rspc3v 3601 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
202, 19syl5 34 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
21203expb 1120 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
2221impcom 407 . 2 ((𝑇 ∈ LinOp ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
2322anassrs 467 1 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  chba 30821   + cva 30822   · csm 30823  LinOpclo 30849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lnop 31743
This theorem is referenced by:  lnop0  31868  lnopmul  31869  lnopli  31870
  Copyright terms: Public domain W3C validator