HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unop Structured version   Visualization version   GIF version

Theorem unop 30277
Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unop ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))

Proof of Theorem unop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 30234 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simprbi 497 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
323ad2ant1 1132 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
4 fveq2 6774 . . . . . 6 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
54oveq1d 7290 . . . . 5 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝑦)))
6 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih 𝑦) = (𝐴 ·ih 𝑦))
75, 6eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦)))
8 fveq2 6774 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
98oveq2d 7291 . . . . 5 (𝑦 = 𝐵 → ((𝑇𝐴) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝐵)))
10 oveq2 7283 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih 𝑦) = (𝐴 ·ih 𝐵))
119, 10eqeq12d 2754 . . . 4 (𝑦 = 𝐵 → (((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
127, 11rspc2v 3570 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
13123adant1 1129 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
143, 13mpd 15 1 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ontowfo 6431  cfv 6433  (class class class)co 7275  chba 29281   ·ih csp 29284  UniOpcuo 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-unop 30205
This theorem is referenced by:  unopf1o  30278  unopnorm  30279  cnvunop  30280  unopadj  30281  counop  30283
  Copyright terms: Public domain W3C validator