HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unop Structured version   Visualization version   GIF version

Theorem unop 31844
Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unop ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))

Proof of Theorem unop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 31801 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simprbi 496 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
323ad2ant1 1133 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
4 fveq2 6858 . . . . . 6 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
54oveq1d 7402 . . . . 5 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝑦)))
6 oveq1 7394 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih 𝑦) = (𝐴 ·ih 𝑦))
75, 6eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦)))
8 fveq2 6858 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
98oveq2d 7403 . . . . 5 (𝑦 = 𝐵 → ((𝑇𝐴) ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih (𝑇𝐵)))
10 oveq2 7395 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih 𝑦) = (𝐴 ·ih 𝐵))
119, 10eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → (((𝑇𝐴) ·ih (𝑇𝑦)) = (𝐴 ·ih 𝑦) ↔ ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
127, 11rspc2v 3599 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
13123adant1 1130 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
143, 13mpd 15 1 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ontowfo 6509  cfv 6511  (class class class)co 7387  chba 30848   ·ih csp 30851  UniOpcuo 30878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-unop 31772
This theorem is referenced by:  unopf1o  31845  unopnorm  31846  cnvunop  31847  unopadj  31848  counop  31850
  Copyright terms: Public domain W3C validator