| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > unop | Structured version Visualization version GIF version | ||
| Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unop | ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunop 31774 | . . . 4 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 5 | 4 | oveq1d 7384 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih (𝑇‘𝑦))) |
| 6 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih 𝑦) = (𝐴 ·ih 𝑦)) | |
| 7 | 5, 6 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝑦)) = (𝐴 ·ih 𝑦))) |
| 8 | fveq2 6840 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) | |
| 9 | 8 | oveq2d 7385 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑇‘𝐴) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
| 10 | oveq2 7377 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ih 𝑦) = (𝐴 ·ih 𝐵)) | |
| 11 | 9, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝑇‘𝐴) ·ih (𝑇‘𝑦)) = (𝐴 ·ih 𝑦) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) |
| 12 | 7, 11 | rspc2v 3596 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵))) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 ℋchba 30821 ·ih csp 30824 UniOpcuo 30851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-unop 31745 |
| This theorem is referenced by: unopf1o 31818 unopnorm 31819 cnvunop 31820 unopadj 31821 counop 31823 |
| Copyright terms: Public domain | W3C validator |