HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnopc Structured version   Visualization version   GIF version

Theorem cnopc 31932
Description: Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnopc ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦

Proof of Theorem cnopc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnop 31876 . . . 4 (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤)))
21simprbi 496 . . 3 (𝑇 ∈ ContOp → ∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤))
3 oveq2 7439 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦 𝑧) = (𝑦 𝐴))
43fveq2d 6910 . . . . . . 7 (𝑧 = 𝐴 → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 𝐴)))
54breq1d 5153 . . . . . 6 (𝑧 = 𝐴 → ((norm‘(𝑦 𝑧)) < 𝑥 ↔ (norm‘(𝑦 𝐴)) < 𝑥))
6 fveq2 6906 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑇𝑧) = (𝑇𝐴))
76oveq2d 7447 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑇𝑦) − (𝑇𝑧)) = ((𝑇𝑦) − (𝑇𝐴)))
87fveq2d 6910 . . . . . . 7 (𝑧 = 𝐴 → (norm‘((𝑇𝑦) − (𝑇𝑧))) = (norm‘((𝑇𝑦) − (𝑇𝐴))))
98breq1d 5153 . . . . . 6 (𝑧 = 𝐴 → ((norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤 ↔ (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤))
105, 9imbi12d 344 . . . . 5 (𝑧 = 𝐴 → (((norm‘(𝑦 𝑧)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
1110rexralbidv 3223 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤)))
12 breq2 5147 . . . . . 6 (𝑤 = 𝐵 → ((norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤 ↔ (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
1312imbi2d 340 . . . . 5 (𝑤 = 𝐵 → (((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1413rexralbidv 3223 . . . 4 (𝑤 = 𝐵 → (∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝑤) ↔ ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
1511, 14rspc2v 3633 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → (∀𝑧 ∈ ℋ ∀𝑤 ∈ ℝ+𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝑧)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝑧))) < 𝑤) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
162, 15syl5com 31 . 2 (𝑇 ∈ ContOp → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵)))
17163impib 1117 1 ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℋ ((norm‘(𝑦 𝐴)) < 𝑥 → (norm‘((𝑇𝑦) − (𝑇𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431   < clt 11295  +crp 13034  chba 30938  normcno 30942   cmv 30944  ContOpccop 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-hilex 31018
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-cnop 31859
This theorem is referenced by:  nmcopexi  32046
  Copyright terms: Public domain W3C validator