MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd Structured version   Visualization version   GIF version

Theorem lo1bdd 15462
Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1bdd ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem lo1bdd
StepHypRef Expression
1 simpl 482 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹 ∈ ≤𝑂(1))
2 simpr 484 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
3 fdm 6679 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
43adantl 481 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 = 𝐴)
5 lo1dm 15461 . . . . 5 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
65adantr 480 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 ⊆ ℝ)
74, 6eqsstrrd 3979 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ⊆ ℝ)
8 ello12 15458 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
92, 7, 8syl2anc 584 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
101, 9mpbid 232 1 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  cr 11043  cle 11185  ≤𝑂(1)clo1 15429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288  df-lo1 15433
This theorem is referenced by:  lo1res  15501
  Copyright terms: Public domain W3C validator