MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd Structured version   Visualization version   GIF version

Theorem lo1bdd 14880
Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1bdd ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem lo1bdd
StepHypRef Expression
1 simpl 485 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹 ∈ ≤𝑂(1))
2 simpr 487 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
3 fdm 6525 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
43adantl 484 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 = 𝐴)
5 lo1dm 14879 . . . . 5 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
65adantr 483 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 ⊆ ℝ)
74, 6eqsstrrd 4009 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ⊆ ℝ)
8 ello12 14876 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
92, 7, 8syl2anc 586 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
101, 9mpbid 234 1 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069  dom cdm 5558  wf 6354  cfv 6358  cr 10539  cle 10679  ≤𝑂(1)clo1 14847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-ico 12747  df-lo1 14851
This theorem is referenced by:  lo1res  14919
  Copyright terms: Public domain W3C validator