| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1o1 | Structured version Visualization version GIF version | ||
| Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| lo1o1 | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dm 15432 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
| 2 | fdm 6655 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 3 | 2 | sseq1d 3961 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ)) |
| 5 | lo1dm 15421 | . . 3 ⊢ ((abs ∘ 𝐹) ∈ ≤𝑂(1) → dom (abs ∘ 𝐹) ⊆ ℝ) | |
| 6 | absf 15240 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
| 7 | fco 6670 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ 𝐹):𝐴⟶ℝ) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (abs ∘ 𝐹):𝐴⟶ℝ) |
| 9 | 8 | fdmd 6656 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (abs ∘ 𝐹) = 𝐴) |
| 10 | 9 | sseq1d 3961 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (abs ∘ 𝐹) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
| 11 | 5, 10 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → ((abs ∘ 𝐹) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ)) |
| 12 | fvco3 6916 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | |
| 13 | 12 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 14 | 13 | breq1d 5096 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (((abs ∘ 𝐹)‘𝑦) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| 15 | 14 | imbi2d 340 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 16 | 15 | ralbidva 3153 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 17 | 16 | 2rexbidv 3197 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 18 | ello12 15418 | . . . . 5 ⊢ (((abs ∘ 𝐹):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) | |
| 19 | 8, 18 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) |
| 20 | elo12 15429 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
| 21 | 17, 19, 20 | 3bitr4rd 312 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| 22 | 21 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ⊆ ℝ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))) |
| 23 | 4, 11, 22 | pm5.21ndd 379 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5086 dom cdm 5611 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 ℂcc 10999 ℝcr 11000 ≤ cle 11142 abscabs 15136 𝑂(1)co1 15388 ≤𝑂(1)clo1 15389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-o1 15392 df-lo1 15393 |
| This theorem is referenced by: lo1o12 15435 o1res 15462 |
| Copyright terms: Public domain | W3C validator |