![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lo1o1 | Structured version Visualization version GIF version |
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
lo1o1 | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dm 14747 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
2 | fdm 6350 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
3 | 2 | sseq1d 3883 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
4 | 1, 3 | syl5ib 236 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ)) |
5 | lo1dm 14736 | . . 3 ⊢ ((abs ∘ 𝐹) ∈ ≤𝑂(1) → dom (abs ∘ 𝐹) ⊆ ℝ) | |
6 | absf 14557 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
7 | fco 6359 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ 𝐹):𝐴⟶ℝ) | |
8 | 6, 7 | mpan 678 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (abs ∘ 𝐹):𝐴⟶ℝ) |
9 | 8 | fdmd 6351 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (abs ∘ 𝐹) = 𝐴) |
10 | 9 | sseq1d 3883 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (abs ∘ 𝐹) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
11 | 5, 10 | syl5ib 236 | . 2 ⊢ (𝐹:𝐴⟶ℂ → ((abs ∘ 𝐹) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ)) |
12 | fvco3 6587 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | |
13 | 12 | adantlr 703 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
14 | 13 | breq1d 4936 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (((abs ∘ 𝐹)‘𝑦) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
15 | 14 | imbi2d 333 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
16 | 15 | ralbidva 3141 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
17 | 16 | 2rexbidv 3240 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
18 | ello12 14733 | . . . . 5 ⊢ (((abs ∘ 𝐹):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) | |
19 | 8, 18 | sylan 572 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) |
20 | elo12 14744 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
21 | 17, 19, 20 | 3bitr4rd 304 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
22 | 21 | ex 405 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ⊆ ℝ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))) |
23 | 4, 11, 22 | pm5.21ndd 372 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ∃wrex 3084 ⊆ wss 3824 class class class wbr 4926 dom cdm 5404 ∘ ccom 5408 ⟶wf 6182 ‘cfv 6186 ℂcc 10332 ℝcr 10333 ≤ cle 10474 abscabs 14453 𝑂(1)co1 14703 ≤𝑂(1)clo1 14704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-pm 8208 df-en 8306 df-dom 8307 df-sdom 8308 df-sup 8700 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-z 11793 df-uz 12058 df-rp 12204 df-ico 12559 df-seq 13184 df-exp 13244 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-o1 14707 df-lo1 14708 |
This theorem is referenced by: lo1o12 14750 o1res 14777 |
Copyright terms: Public domain | W3C validator |