| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1o1 | Structured version Visualization version GIF version | ||
| Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| lo1o1 | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dm 15551 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
| 2 | fdm 6720 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 3 | 2 | sseq1d 3995 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ)) |
| 5 | lo1dm 15540 | . . 3 ⊢ ((abs ∘ 𝐹) ∈ ≤𝑂(1) → dom (abs ∘ 𝐹) ⊆ ℝ) | |
| 6 | absf 15361 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
| 7 | fco 6735 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ 𝐹):𝐴⟶ℝ) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (abs ∘ 𝐹):𝐴⟶ℝ) |
| 9 | 8 | fdmd 6721 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (abs ∘ 𝐹) = 𝐴) |
| 10 | 9 | sseq1d 3995 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (abs ∘ 𝐹) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
| 11 | 5, 10 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → ((abs ∘ 𝐹) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ)) |
| 12 | fvco3 6983 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | |
| 13 | 12 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 14 | 13 | breq1d 5134 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (((abs ∘ 𝐹)‘𝑦) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| 15 | 14 | imbi2d 340 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 16 | 15 | ralbidva 3162 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 17 | 16 | 2rexbidv 3210 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 18 | ello12 15537 | . . . . 5 ⊢ (((abs ∘ 𝐹):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) | |
| 19 | 8, 18 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚))) |
| 20 | elo12 15548 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
| 21 | 17, 19, 20 | 3bitr4rd 312 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| 22 | 21 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ⊆ ℝ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))) |
| 23 | 4, 11, 22 | pm5.21ndd 379 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 ℂcc 11132 ℝcr 11133 ≤ cle 11275 abscabs 15258 𝑂(1)co1 15507 ≤𝑂(1)clo1 15508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-o1 15511 df-lo1 15512 |
| This theorem is referenced by: lo1o12 15554 o1res 15581 |
| Copyright terms: Public domain | W3C validator |