MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o1 Structured version   Visualization version   GIF version

Theorem lo1o1 15439
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1o1 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))

Proof of Theorem lo1o1
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 15437 . . 3 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2 fdm 6661 . . . 4 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
32sseq1d 3967 . . 3 (𝐹:𝐴⟶ℂ → (dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
41, 3imbitrid 244 . 2 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ))
5 lo1dm 15426 . . 3 ((abs ∘ 𝐹) ∈ ≤𝑂(1) → dom (abs ∘ 𝐹) ⊆ ℝ)
6 absf 15245 . . . . . 6 abs:ℂ⟶ℝ
7 fco 6676 . . . . . 6 ((abs:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ 𝐹):𝐴⟶ℝ)
86, 7mpan 690 . . . . 5 (𝐹:𝐴⟶ℂ → (abs ∘ 𝐹):𝐴⟶ℝ)
98fdmd 6662 . . . 4 (𝐹:𝐴⟶ℂ → dom (abs ∘ 𝐹) = 𝐴)
109sseq1d 3967 . . 3 (𝐹:𝐴⟶ℂ → (dom (abs ∘ 𝐹) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
115, 10imbitrid 244 . 2 (𝐹:𝐴⟶ℂ → ((abs ∘ 𝐹) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
12 fvco3 6922 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝑦𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
1312adantlr 715 . . . . . . . 8 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
1413breq1d 5102 . . . . . . 7 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (((abs ∘ 𝐹)‘𝑦) ≤ 𝑚 ↔ (abs‘(𝐹𝑦)) ≤ 𝑚))
1514imbi2d 340 . . . . . 6 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → ((𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
1615ralbidva 3150 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
17162rexbidv 3194 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
18 ello12 15423 . . . . 5 (((abs ∘ 𝐹):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚)))
198, 18sylan 580 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚)))
20 elo12 15434 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2117, 19, 203bitr4rd 312 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))
2221ex 412 . 2 (𝐹:𝐴⟶ℂ → (𝐴 ⊆ ℝ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))))
234, 11, 22pm5.21ndd 379 1 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  cc 11007  cr 11008  cle 11150  abscabs 15141  𝑂(1)co1 15393  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-o1 15397  df-lo1 15398
This theorem is referenced by:  lo1o12  15440  o1res  15467
  Copyright terms: Public domain W3C validator