MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1add Structured version   Visualization version   GIF version

Theorem lo1add 15534
Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Assertion
Ref Expression
lo1add (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1add
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3204 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6189 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 15426 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstrrd 3970 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 15254 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 readdcl 11089 . . . . . . . . 9 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 + 𝑛) ∈ ℝ)
1514adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 + 𝑛) ∈ ℝ)
164, 1lo1mptrcl 15529 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1716adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
18 o1add2.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶𝑉)
1918, 2lo1mptrcl 15529 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2019adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
21 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
22 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
23 le2add 11599 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((𝐵𝑚𝐶𝑛) → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛)))
2417, 20, 21, 22, 23syl22anc 838 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛)))
2524imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛))))
2625ralimdva 3144 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛))))
27 breq2 5095 . . . . . . . . . . 11 (𝑝 = (𝑚 + 𝑛) → ((𝐵 + 𝐶) ≤ 𝑝 ↔ (𝐵 + 𝐶) ≤ (𝑚 + 𝑛)))
2827imbi2d 340 . . . . . . . . . 10 (𝑝 = (𝑚 + 𝑛) → ((𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛))))
2928ralbidv 3155 . . . . . . . . 9 (𝑝 = (𝑚 + 𝑛) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛))))
3029rspcev 3577 . . . . . . . 8 (((𝑚 + 𝑛) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ (𝑚 + 𝑛))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝))
3115, 26, 30syl6an 684 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
3231reximdv 3147 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
3313, 32sylbird 260 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
3433rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
353, 34biimtrrid 243 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
3610, 16ello1mpt 15428 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
37 rexcom 3261 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
3836, 37bitrdi 287 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
3910, 19ello1mpt 15428 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
40 rexcom 3261 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
4139, 40bitrdi 287 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4238, 41anbi12d 632 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
4316, 19readdcld 11141 . . . 4 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4410, 43ello1mpt 15428 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 + 𝐶) ≤ 𝑝)))
4535, 42, 443imtr4d 294 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1)))
461, 2, 45mp2and 699 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  dom cdm 5616  (class class class)co 7346  cr 11005   + caddc 11009  cle 11147  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-lo1 15398
This theorem is referenced by:  lo1sub  15538  pntrlog2bndlem4  27519  pntrlog2bndlem5  27520  pntrlog2bndlem6  27522
  Copyright terms: Public domain W3C validator